Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 64
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
De Wilde
1
70 kgNijdam
6
70 kgSergeant
7
76 kgGlaus
13
67 kgPeeters
15
76 kgPieters
17
82 kgSkibby
42
70 kgMarie
43
68 kgHodge
51
74 kgNevens
57
58 kgYates
63
74 kgGayant
64
69 kgKuiper
65
69 kgDuclos-Lassalle
67
73 kgBauer
71
72 kgRué
74
74 kgJourdan
76
64 kgChevallier
79
69 kgAlonso
83
70 kgVan Impe
87
59 kgZoetemelk
89
68 kgHoste
92
76 kgSolleveld
104
93 kgMadiot
106
68 kg
1
70 kgNijdam
6
70 kgSergeant
7
76 kgGlaus
13
67 kgPeeters
15
76 kgPieters
17
82 kgSkibby
42
70 kgMarie
43
68 kgHodge
51
74 kgNevens
57
58 kgYates
63
74 kgGayant
64
69 kgKuiper
65
69 kgDuclos-Lassalle
67
73 kgBauer
71
72 kgRué
74
74 kgJourdan
76
64 kgChevallier
79
69 kgAlonso
83
70 kgVan Impe
87
59 kgZoetemelk
89
68 kgHoste
92
76 kgSolleveld
104
93 kgMadiot
106
68 kg
Weight (KG) →
Result →
93
58
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | DE WILDE Etienne | 70 |
6 | NIJDAM Jelle | 70 |
7 | SERGEANT Marc | 76 |
13 | GLAUS Gilbert | 67 |
15 | PEETERS Wilfried | 76 |
17 | PIETERS Peter | 82 |
42 | SKIBBY Jesper | 70 |
43 | MARIE Thierry | 68 |
51 | HODGE Stephen | 74 |
57 | NEVENS Jan | 58 |
63 | YATES Sean | 74 |
64 | GAYANT Martial | 69 |
65 | KUIPER Hennie | 69 |
67 | DUCLOS-LASSALLE Gilbert | 73 |
71 | BAUER Steve | 72 |
74 | RUÉ Gérard | 74 |
76 | JOURDAN Christian | 64 |
79 | CHEVALLIER Philippe | 69 |
83 | ALONSO Marino | 70 |
87 | VAN IMPE Lucien | 59 |
89 | ZOETEMELK Joop | 68 |
92 | HOSTE Frank | 76 |
104 | SOLLEVELD Gerrit | 93 |
106 | MADIOT Marc | 68 |