Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 45
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Bauer
3
72 kgGlaus
4
67 kgDe Wilde
5
70 kgSergeant
7
76 kgGayant
11
69 kgNijdam
12
70 kgPeeters
17
76 kgSkibby
21
70 kgDuclos-Lassalle
25
73 kgKuiper
36
69 kgYates
37
74 kgJourdan
48
64 kgHodge
49
74 kgVan Impe
54
59 kgMarie
56
68 kgMadiot
58
68 kgChevallier
59
69 kgNevens
62
58 kgZoetemelk
71
68 kgPieters
77
82 kgRué
90
74 kgAlonso
95
70 kgSolleveld
116
93 kg
3
72 kgGlaus
4
67 kgDe Wilde
5
70 kgSergeant
7
76 kgGayant
11
69 kgNijdam
12
70 kgPeeters
17
76 kgSkibby
21
70 kgDuclos-Lassalle
25
73 kgKuiper
36
69 kgYates
37
74 kgJourdan
48
64 kgHodge
49
74 kgVan Impe
54
59 kgMarie
56
68 kgMadiot
58
68 kgChevallier
59
69 kgNevens
62
58 kgZoetemelk
71
68 kgPieters
77
82 kgRué
90
74 kgAlonso
95
70 kgSolleveld
116
93 kg
Weight (KG) →
Result →
93
58
3
116
# | Rider | Weight (KG) |
---|---|---|
3 | BAUER Steve | 72 |
4 | GLAUS Gilbert | 67 |
5 | DE WILDE Etienne | 70 |
7 | SERGEANT Marc | 76 |
11 | GAYANT Martial | 69 |
12 | NIJDAM Jelle | 70 |
17 | PEETERS Wilfried | 76 |
21 | SKIBBY Jesper | 70 |
25 | DUCLOS-LASSALLE Gilbert | 73 |
36 | KUIPER Hennie | 69 |
37 | YATES Sean | 74 |
48 | JOURDAN Christian | 64 |
49 | HODGE Stephen | 74 |
54 | VAN IMPE Lucien | 59 |
56 | MARIE Thierry | 68 |
58 | MADIOT Marc | 68 |
59 | CHEVALLIER Philippe | 69 |
62 | NEVENS Jan | 58 |
71 | ZOETEMELK Joop | 68 |
77 | PIETERS Peter | 82 |
90 | RUÉ Gérard | 74 |
95 | ALONSO Marino | 70 |
116 | SOLLEVELD Gerrit | 93 |