Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
De Wilde
8
70 kgLilholt
12
72 kgGayant
19
69 kgMarie
20
68 kgVeenstra
34
70 kgWalton
40
68 kgHoste
42
76 kgRiis
45
71 kgDurand
52
76 kgRichard
53
67 kgNijdam
58
70 kgRué
62
74 kgTrinkler
66
67 kgSpears
70
63 kgBauer
78
72 kgDuclos-Lassalle
82
73 kgBomans
85
74 kgKuiper
100
69 kgDemol
105
72 kgSolleveld
127
93 kgNevens
128
58 kg
8
70 kgLilholt
12
72 kgGayant
19
69 kgMarie
20
68 kgVeenstra
34
70 kgWalton
40
68 kgHoste
42
76 kgRiis
45
71 kgDurand
52
76 kgRichard
53
67 kgNijdam
58
70 kgRué
62
74 kgTrinkler
66
67 kgSpears
70
63 kgBauer
78
72 kgDuclos-Lassalle
82
73 kgBomans
85
74 kgKuiper
100
69 kgDemol
105
72 kgSolleveld
127
93 kgNevens
128
58 kg
Weight (KG) →
Result →
93
58
8
128
# | Rider | Weight (KG) |
---|---|---|
8 | DE WILDE Etienne | 70 |
12 | LILHOLT Søren | 72 |
19 | GAYANT Martial | 69 |
20 | MARIE Thierry | 68 |
34 | VEENSTRA Wiebren | 70 |
40 | WALTON Brian | 68 |
42 | HOSTE Frank | 76 |
45 | RIIS Bjarne | 71 |
52 | DURAND Jacky | 76 |
53 | RICHARD Pascal | 67 |
58 | NIJDAM Jelle | 70 |
62 | RUÉ Gérard | 74 |
66 | TRINKLER Richard | 67 |
70 | SPEARS David | 63 |
78 | BAUER Steve | 72 |
82 | DUCLOS-LASSALLE Gilbert | 73 |
85 | BOMANS Carlo | 74 |
100 | KUIPER Hennie | 69 |
105 | DEMOL Dirk | 72 |
127 | SOLLEVELD Gerrit | 93 |
128 | NEVENS Jan | 58 |