Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 78
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bauer
3
72 kgLilholt
12
72 kgHoste
30
76 kgMarie
32
68 kgRiis
34
71 kgSpears
41
63 kgDuclos-Lassalle
44
73 kgGayant
46
69 kgVeenstra
47
70 kgDemol
52
72 kgTrinkler
62
67 kgRué
64
74 kgRichard
77
67 kgBomans
80
74 kgSolleveld
88
93 kgNijdam
90
70 kgDurand
97
76 kgDe Wilde
105
70 kgNevens
113
58 kgWalton
125
68 kg
3
72 kgLilholt
12
72 kgHoste
30
76 kgMarie
32
68 kgRiis
34
71 kgSpears
41
63 kgDuclos-Lassalle
44
73 kgGayant
46
69 kgVeenstra
47
70 kgDemol
52
72 kgTrinkler
62
67 kgRué
64
74 kgRichard
77
67 kgBomans
80
74 kgSolleveld
88
93 kgNijdam
90
70 kgDurand
97
76 kgDe Wilde
105
70 kgNevens
113
58 kgWalton
125
68 kg
Weight (KG) →
Result →
93
58
3
125
# | Rider | Weight (KG) |
---|---|---|
3 | BAUER Steve | 72 |
12 | LILHOLT Søren | 72 |
30 | HOSTE Frank | 76 |
32 | MARIE Thierry | 68 |
34 | RIIS Bjarne | 71 |
41 | SPEARS David | 63 |
44 | DUCLOS-LASSALLE Gilbert | 73 |
46 | GAYANT Martial | 69 |
47 | VEENSTRA Wiebren | 70 |
52 | DEMOL Dirk | 72 |
62 | TRINKLER Richard | 67 |
64 | RUÉ Gérard | 74 |
77 | RICHARD Pascal | 67 |
80 | BOMANS Carlo | 74 |
88 | SOLLEVELD Gerrit | 93 |
90 | NIJDAM Jelle | 70 |
97 | DURAND Jacky | 76 |
105 | DE WILDE Etienne | 70 |
113 | NEVENS Jan | 58 |
125 | WALTON Brian | 68 |