Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Marie
27
68 kgLilholt
28
72 kgGayant
31
69 kgDuclos-Lassalle
32
73 kgDurand
34
76 kgBauer
40
72 kgDe Wilde
41
70 kgWalton
42
68 kgVeenstra
45
70 kgHoste
75
76 kgSolleveld
84
93 kgNijdam
85
70 kgRiis
86
71 kgSpears
93
63 kgTrinkler
97
67 kgDemol
98
72 kgRué
102
74 kgBomans
116
74 kg
27
68 kgLilholt
28
72 kgGayant
31
69 kgDuclos-Lassalle
32
73 kgDurand
34
76 kgBauer
40
72 kgDe Wilde
41
70 kgWalton
42
68 kgVeenstra
45
70 kgHoste
75
76 kgSolleveld
84
93 kgNijdam
85
70 kgRiis
86
71 kgSpears
93
63 kgTrinkler
97
67 kgDemol
98
72 kgRué
102
74 kgBomans
116
74 kg
Weight (KG) →
Result →
93
63
27
116
# | Rider | Weight (KG) |
---|---|---|
27 | MARIE Thierry | 68 |
28 | LILHOLT Søren | 72 |
31 | GAYANT Martial | 69 |
32 | DUCLOS-LASSALLE Gilbert | 73 |
34 | DURAND Jacky | 76 |
40 | BAUER Steve | 72 |
41 | DE WILDE Etienne | 70 |
42 | WALTON Brian | 68 |
45 | VEENSTRA Wiebren | 70 |
75 | HOSTE Frank | 76 |
84 | SOLLEVELD Gerrit | 93 |
85 | NIJDAM Jelle | 70 |
86 | RIIS Bjarne | 71 |
93 | SPEARS David | 63 |
97 | TRINKLER Richard | 67 |
98 | DEMOL Dirk | 72 |
102 | RUÉ Gérard | 74 |
116 | BOMANS Carlo | 74 |