Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
De Wilde
1
70 kgMoreau
1
77 kgRoche
1
74 kgLilholt
1
72 kgHolm Sørensen
1
77 kgVanderaerden
2
74 kgNijdam
2
70 kgSolleveld
2
93 kgde Vries
2
75 kgMuseeuw
3
71 kgDemol
3
72 kgDemierre
4
70 kgHoste
5
76 kgSeigneur
7
71 kgDernies
8
75 kgvan der Poel
8
70 kgBomans
8
74 kgGayant
9
69 kgMadiot
9
68 kgPieters
11
82 kgMoncassin
12
73 kgKelly
14
77 kgEarley
14
62 kg
1
70 kgMoreau
1
77 kgRoche
1
74 kgLilholt
1
72 kgHolm Sørensen
1
77 kgVanderaerden
2
74 kgNijdam
2
70 kgSolleveld
2
93 kgde Vries
2
75 kgMuseeuw
3
71 kgDemol
3
72 kgDemierre
4
70 kgHoste
5
76 kgSeigneur
7
71 kgDernies
8
75 kgvan der Poel
8
70 kgBomans
8
74 kgGayant
9
69 kgMadiot
9
68 kgPieters
11
82 kgMoncassin
12
73 kgKelly
14
77 kgEarley
14
62 kg
Weight (KG) →
Result →
93
62
1
14
# | Rider | Weight (KG) |
---|---|---|
1 | DE WILDE Etienne | 70 |
1 | MOREAU Francis | 77 |
1 | ROCHE Stephen | 74 |
1 | LILHOLT Søren | 72 |
1 | HOLM SØRENSEN Brian | 77 |
2 | VANDERAERDEN Eric | 74 |
2 | NIJDAM Jelle | 70 |
2 | SOLLEVELD Gerrit | 93 |
2 | DE VRIES Gerrit | 75 |
3 | MUSEEUW Johan | 71 |
3 | DEMOL Dirk | 72 |
4 | DEMIERRE Serge | 70 |
5 | HOSTE Frank | 76 |
7 | SEIGNEUR Eddy | 71 |
8 | DERNIES Michel | 75 |
8 | VAN DER POEL Adrie | 70 |
8 | BOMANS Carlo | 74 |
9 | GAYANT Martial | 69 |
9 | MADIOT Marc | 68 |
11 | PIETERS Peter | 82 |
12 | MONCASSIN Frédéric | 73 |
14 | KELLY Sean | 77 |
14 | EARLEY Martin | 62 |