Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 296
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
Bomans
1
74 kgSolleveld
10
93 kgvan der Poel
21
70 kgRoche
31
74 kgPieters
34
82 kgde Vries
37
75 kgMoreau
45
77 kgMoncassin
46
73 kgDe Wilde
52
70 kgVanderaerden
68
74 kgDemol
75
72 kgGayant
83
69 kgLilholt
89
72 kgHolm Sørensen
97
77 kgKelly
99
77 kgEarley
101
62 kgSeigneur
107
71 kgDemierre
109
70 kgDernies
113
75 kgMadiot
114
68 kgMuseeuw
116
71 kgHoste
118
76 kgNijdam
122
70 kg
1
74 kgSolleveld
10
93 kgvan der Poel
21
70 kgRoche
31
74 kgPieters
34
82 kgde Vries
37
75 kgMoreau
45
77 kgMoncassin
46
73 kgDe Wilde
52
70 kgVanderaerden
68
74 kgDemol
75
72 kgGayant
83
69 kgLilholt
89
72 kgHolm Sørensen
97
77 kgKelly
99
77 kgEarley
101
62 kgSeigneur
107
71 kgDemierre
109
70 kgDernies
113
75 kgMadiot
114
68 kgMuseeuw
116
71 kgHoste
118
76 kgNijdam
122
70 kg
Weight (KG) →
Result →
93
62
1
122
# | Rider | Weight (KG) |
---|---|---|
1 | BOMANS Carlo | 74 |
10 | SOLLEVELD Gerrit | 93 |
21 | VAN DER POEL Adrie | 70 |
31 | ROCHE Stephen | 74 |
34 | PIETERS Peter | 82 |
37 | DE VRIES Gerrit | 75 |
45 | MOREAU Francis | 77 |
46 | MONCASSIN Frédéric | 73 |
52 | DE WILDE Etienne | 70 |
68 | VANDERAERDEN Eric | 74 |
75 | DEMOL Dirk | 72 |
83 | GAYANT Martial | 69 |
89 | LILHOLT Søren | 72 |
97 | HOLM SØRENSEN Brian | 77 |
99 | KELLY Sean | 77 |
101 | EARLEY Martin | 62 |
107 | SEIGNEUR Eddy | 71 |
109 | DEMIERRE Serge | 70 |
113 | DERNIES Michel | 75 |
114 | MADIOT Marc | 68 |
116 | MUSEEUW Johan | 71 |
118 | HOSTE Frank | 76 |
122 | NIJDAM Jelle | 70 |