Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 114
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
De Wilde
3
70 kgBomans
4
74 kgMoncassin
6
73 kgNijdam
15
70 kgPieters
24
82 kgVanderaerden
27
74 kgKelly
28
77 kgMuseeuw
38
71 kgDernies
39
75 kgSolleveld
40
93 kgvan der Poel
44
70 kgHoste
45
76 kgRoche
46
74 kgGayant
47
69 kgDemierre
65
70 kgEarley
66
62 kgHolm Sørensen
76
77 kgde Vries
79
75 kgSeigneur
82
71 kgMoreau
84
77 kgMadiot
91
68 kgLilholt
100
72 kgDemol
117
72 kg
3
70 kgBomans
4
74 kgMoncassin
6
73 kgNijdam
15
70 kgPieters
24
82 kgVanderaerden
27
74 kgKelly
28
77 kgMuseeuw
38
71 kgDernies
39
75 kgSolleveld
40
93 kgvan der Poel
44
70 kgHoste
45
76 kgRoche
46
74 kgGayant
47
69 kgDemierre
65
70 kgEarley
66
62 kgHolm Sørensen
76
77 kgde Vries
79
75 kgSeigneur
82
71 kgMoreau
84
77 kgMadiot
91
68 kgLilholt
100
72 kgDemol
117
72 kg
Weight (KG) →
Result →
93
62
3
117
# | Rider | Weight (KG) |
---|---|---|
3 | DE WILDE Etienne | 70 |
4 | BOMANS Carlo | 74 |
6 | MONCASSIN Frédéric | 73 |
15 | NIJDAM Jelle | 70 |
24 | PIETERS Peter | 82 |
27 | VANDERAERDEN Eric | 74 |
28 | KELLY Sean | 77 |
38 | MUSEEUW Johan | 71 |
39 | DERNIES Michel | 75 |
40 | SOLLEVELD Gerrit | 93 |
44 | VAN DER POEL Adrie | 70 |
45 | HOSTE Frank | 76 |
46 | ROCHE Stephen | 74 |
47 | GAYANT Martial | 69 |
65 | DEMIERRE Serge | 70 |
66 | EARLEY Martin | 62 |
76 | HOLM SØRENSEN Brian | 77 |
79 | DE VRIES Gerrit | 75 |
82 | SEIGNEUR Eddy | 71 |
84 | MOREAU Francis | 77 |
91 | MADIOT Marc | 68 |
100 | LILHOLT Søren | 72 |
117 | DEMOL Dirk | 72 |