Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Marie
2
68 kgMoreau
3
77 kgJalabert
4
66 kgNijdam
11
70 kgPieters
12
82 kgMejia
14
63 kgLeysen
16
75 kgVeenstra
18
70 kgRobin
27
63 kgMoncassin
29
73 kgSergeant
31
76 kgSolleveld
36
93 kgRoche
43
74 kgSimon
46
70 kgLilholt
47
72 kgGayant
48
69 kgDe Wilde
52
70 kgBourguignon
67
72 kgHeppner
79
69 kgVirenque
83
65 kgJärmann
84
73 kgDemol
98
72 kgDernies
109
75 kg
2
68 kgMoreau
3
77 kgJalabert
4
66 kgNijdam
11
70 kgPieters
12
82 kgMejia
14
63 kgLeysen
16
75 kgVeenstra
18
70 kgRobin
27
63 kgMoncassin
29
73 kgSergeant
31
76 kgSolleveld
36
93 kgRoche
43
74 kgSimon
46
70 kgLilholt
47
72 kgGayant
48
69 kgDe Wilde
52
70 kgBourguignon
67
72 kgHeppner
79
69 kgVirenque
83
65 kgJärmann
84
73 kgDemol
98
72 kgDernies
109
75 kg
Weight (KG) →
Result →
93
63
2
109
# | Rider | Weight (KG) |
---|---|---|
2 | MARIE Thierry | 68 |
3 | MOREAU Francis | 77 |
4 | JALABERT Laurent | 66 |
11 | NIJDAM Jelle | 70 |
12 | PIETERS Peter | 82 |
14 | MEJIA Alvaro | 63 |
16 | LEYSEN Bart | 75 |
18 | VEENSTRA Wiebren | 70 |
27 | ROBIN Jean-Cyril | 63 |
29 | MONCASSIN Frédéric | 73 |
31 | SERGEANT Marc | 76 |
36 | SOLLEVELD Gerrit | 93 |
43 | ROCHE Stephen | 74 |
46 | SIMON François | 70 |
47 | LILHOLT Søren | 72 |
48 | GAYANT Martial | 69 |
52 | DE WILDE Etienne | 70 |
67 | BOURGUIGNON Thierry | 72 |
79 | HEPPNER Jens | 69 |
83 | VIRENQUE Richard | 65 |
84 | JÄRMANN Rolf | 73 |
98 | DEMOL Dirk | 72 |
109 | DERNIES Michel | 75 |