Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 26
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Weltz
3
65 kgInduráin
4
76 kgYates
7
74 kgvan der Poel
9
70 kgPieters
12
82 kgDuclos-Lassalle
28
73 kgDernies
30
75 kgCapelle
41
73 kgSchur
45
73 kgMoncassin
49
73 kgSeigneur
52
71 kgImboden
55
70 kgHoffman
57
80 kgLeysen
66
75 kgWalton
74
68 kgMoreau
76
77 kgMeinert-Nielsen
82
73 kgMarie
83
68 kgWampers
86
82 kgDemol
100
72 kg
3
65 kgInduráin
4
76 kgYates
7
74 kgvan der Poel
9
70 kgPieters
12
82 kgDuclos-Lassalle
28
73 kgDernies
30
75 kgCapelle
41
73 kgSchur
45
73 kgMoncassin
49
73 kgSeigneur
52
71 kgImboden
55
70 kgHoffman
57
80 kgLeysen
66
75 kgWalton
74
68 kgMoreau
76
77 kgMeinert-Nielsen
82
73 kgMarie
83
68 kgWampers
86
82 kgDemol
100
72 kg
Weight (KG) →
Result →
82
65
3
100
# | Rider | Weight (KG) |
---|---|---|
3 | WELTZ Johnny | 65 |
4 | INDURÁIN Miguel | 76 |
7 | YATES Sean | 74 |
9 | VAN DER POEL Adrie | 70 |
12 | PIETERS Peter | 82 |
28 | DUCLOS-LASSALLE Gilbert | 73 |
30 | DERNIES Michel | 75 |
41 | CAPELLE Christophe | 73 |
45 | SCHUR Jan | 73 |
49 | MONCASSIN Frédéric | 73 |
52 | SEIGNEUR Eddy | 71 |
55 | IMBODEN Heinz | 70 |
57 | HOFFMAN Tristan | 80 |
66 | LEYSEN Bart | 75 |
74 | WALTON Brian | 68 |
76 | MOREAU Francis | 77 |
82 | MEINERT-NIELSEN Peter | 73 |
83 | MARIE Thierry | 68 |
86 | WAMPERS Jean-Marie | 82 |
100 | DEMOL Dirk | 72 |