Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 114
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Schur
2
73 kgPieters
3
82 kgMarie
7
68 kgMoncassin
8
73 kgWeltz
13
65 kgLeysen
17
75 kgYates
21
74 kgInduráin
27
76 kgCapelle
28
73 kgvan der Poel
35
70 kgWampers
37
82 kgDernies
41
75 kgMeinert-Nielsen
50
73 kgHoffman
52
80 kgMoreau
59
77 kgDuclos-Lassalle
64
73 kgSeigneur
66
71 kgDemol
73
72 kgWalton
75
68 kgImboden
114
70 kg
2
73 kgPieters
3
82 kgMarie
7
68 kgMoncassin
8
73 kgWeltz
13
65 kgLeysen
17
75 kgYates
21
74 kgInduráin
27
76 kgCapelle
28
73 kgvan der Poel
35
70 kgWampers
37
82 kgDernies
41
75 kgMeinert-Nielsen
50
73 kgHoffman
52
80 kgMoreau
59
77 kgDuclos-Lassalle
64
73 kgSeigneur
66
71 kgDemol
73
72 kgWalton
75
68 kgImboden
114
70 kg
Weight (KG) →
Result →
82
65
2
114
# | Rider | Weight (KG) |
---|---|---|
2 | SCHUR Jan | 73 |
3 | PIETERS Peter | 82 |
7 | MARIE Thierry | 68 |
8 | MONCASSIN Frédéric | 73 |
13 | WELTZ Johnny | 65 |
17 | LEYSEN Bart | 75 |
21 | YATES Sean | 74 |
27 | INDURÁIN Miguel | 76 |
28 | CAPELLE Christophe | 73 |
35 | VAN DER POEL Adrie | 70 |
37 | WAMPERS Jean-Marie | 82 |
41 | DERNIES Michel | 75 |
50 | MEINERT-NIELSEN Peter | 73 |
52 | HOFFMAN Tristan | 80 |
59 | MOREAU Francis | 77 |
64 | DUCLOS-LASSALLE Gilbert | 73 |
66 | SEIGNEUR Eddy | 71 |
73 | DEMOL Dirk | 72 |
75 | WALTON Brian | 68 |
114 | IMBODEN Heinz | 70 |