Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 168
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Pieters
1
82 kgCapelle
6
73 kgMoncassin
9
73 kgDuclos-Lassalle
10
73 kgLeysen
20
75 kgWampers
24
82 kgYates
26
74 kgvan der Poel
30
70 kgMarie
34
68 kgSchur
39
73 kgMoreau
40
77 kgWeltz
43
65 kgDernies
51
75 kgDemol
54
72 kgWalton
61
68 kgHoffman
65
80 kgInduráin
82
76 kgMeinert-Nielsen
87
73 kgSeigneur
94
71 kgImboden
100
70 kg
1
82 kgCapelle
6
73 kgMoncassin
9
73 kgDuclos-Lassalle
10
73 kgLeysen
20
75 kgWampers
24
82 kgYates
26
74 kgvan der Poel
30
70 kgMarie
34
68 kgSchur
39
73 kgMoreau
40
77 kgWeltz
43
65 kgDernies
51
75 kgDemol
54
72 kgWalton
61
68 kgHoffman
65
80 kgInduráin
82
76 kgMeinert-Nielsen
87
73 kgSeigneur
94
71 kgImboden
100
70 kg
Weight (KG) →
Result →
82
65
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | PIETERS Peter | 82 |
6 | CAPELLE Christophe | 73 |
9 | MONCASSIN Frédéric | 73 |
10 | DUCLOS-LASSALLE Gilbert | 73 |
20 | LEYSEN Bart | 75 |
24 | WAMPERS Jean-Marie | 82 |
26 | YATES Sean | 74 |
30 | VAN DER POEL Adrie | 70 |
34 | MARIE Thierry | 68 |
39 | SCHUR Jan | 73 |
40 | MOREAU Francis | 77 |
43 | WELTZ Johnny | 65 |
51 | DERNIES Michel | 75 |
54 | DEMOL Dirk | 72 |
61 | WALTON Brian | 68 |
65 | HOFFMAN Tristan | 80 |
82 | INDURÁIN Miguel | 76 |
87 | MEINERT-NIELSEN Peter | 73 |
94 | SEIGNEUR Eddy | 71 |
100 | IMBODEN Heinz | 70 |