Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Marie
1
68 kgMoreau
2
77 kgInduráin
6
76 kgDuclos-Lassalle
9
73 kgPieters
11
82 kgSeigneur
14
71 kgMeinert-Nielsen
15
73 kgWalton
16
68 kgSchur
17
73 kgYates
24
74 kgLeysen
28
75 kgWeltz
31
65 kgDernies
32
75 kgMoncassin
33
73 kgCapelle
35
73 kgvan der Poel
42
70 kgWampers
51
82 kgHoffman
60
80 kgDemol
65
72 kgImboden
89
70 kg
1
68 kgMoreau
2
77 kgInduráin
6
76 kgDuclos-Lassalle
9
73 kgPieters
11
82 kgSeigneur
14
71 kgMeinert-Nielsen
15
73 kgWalton
16
68 kgSchur
17
73 kgYates
24
74 kgLeysen
28
75 kgWeltz
31
65 kgDernies
32
75 kgMoncassin
33
73 kgCapelle
35
73 kgvan der Poel
42
70 kgWampers
51
82 kgHoffman
60
80 kgDemol
65
72 kgImboden
89
70 kg
Weight (KG) →
Result →
82
65
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | MARIE Thierry | 68 |
2 | MOREAU Francis | 77 |
6 | INDURÁIN Miguel | 76 |
9 | DUCLOS-LASSALLE Gilbert | 73 |
11 | PIETERS Peter | 82 |
14 | SEIGNEUR Eddy | 71 |
15 | MEINERT-NIELSEN Peter | 73 |
16 | WALTON Brian | 68 |
17 | SCHUR Jan | 73 |
24 | YATES Sean | 74 |
28 | LEYSEN Bart | 75 |
31 | WELTZ Johnny | 65 |
32 | DERNIES Michel | 75 |
33 | MONCASSIN Frédéric | 73 |
35 | CAPELLE Christophe | 73 |
42 | VAN DER POEL Adrie | 70 |
51 | WAMPERS Jean-Marie | 82 |
60 | HOFFMAN Tristan | 80 |
65 | DEMOL Dirk | 72 |
89 | IMBODEN Heinz | 70 |