Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Magnien
1
68 kgCapelle
2
73 kgDe Wilde
4
70 kgDufaux
5
60 kgDe Clercq
6
66 kgvan Bon
7
72 kgSchur
8
73 kgSmetanine
9
69 kgKoerts
12
78 kgDierckxsens
13
71 kgDekker
15
66 kgDurand
19
76 kgBlijlevens
20
70 kgSeigneur
21
71 kgNijdam
24
70 kgArrieta
25
68 kgZamana
26
74 kgMattan
28
69 kgMarie
29
68 kg
1
68 kgCapelle
2
73 kgDe Wilde
4
70 kgDufaux
5
60 kgDe Clercq
6
66 kgvan Bon
7
72 kgSchur
8
73 kgSmetanine
9
69 kgKoerts
12
78 kgDierckxsens
13
71 kgDekker
15
66 kgDurand
19
76 kgBlijlevens
20
70 kgSeigneur
21
71 kgNijdam
24
70 kgArrieta
25
68 kgZamana
26
74 kgMattan
28
69 kgMarie
29
68 kg
Weight (KG) →
Result →
78
60
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | MAGNIEN Emmanuel | 68 |
2 | CAPELLE Christophe | 73 |
4 | DE WILDE Etienne | 70 |
5 | DUFAUX Laurent | 60 |
6 | DE CLERCQ Mario | 66 |
7 | VAN BON Léon | 72 |
8 | SCHUR Jan | 73 |
9 | SMETANINE Serguei | 69 |
12 | KOERTS Jans | 78 |
13 | DIERCKXSENS Ludo | 71 |
15 | DEKKER Erik | 66 |
19 | DURAND Jacky | 76 |
20 | BLIJLEVENS Jeroen | 70 |
21 | SEIGNEUR Eddy | 71 |
24 | NIJDAM Jelle | 70 |
25 | ARRIETA José Luis | 68 |
26 | ZAMANA Cezary | 74 |
28 | MATTAN Nico | 69 |
29 | MARIE Thierry | 68 |