Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Magnien
1
68 kgCapelle
2
73 kgSmetanine
4
69 kgDe Wilde
6
70 kgDufaux
7
60 kgSchur
8
73 kgvan Bon
9
72 kgBlijlevens
10
70 kgDe Clercq
11
66 kgKoerts
12
78 kgZamana
14
74 kgDierckxsens
15
71 kgDekker
18
66 kgVerstrepen
21
66 kgDurand
23
76 kgSeigneur
25
71 kgNijdam
28
70 kgArrieta
29
68 kgMattan
31
69 kgMarie
32
68 kg
1
68 kgCapelle
2
73 kgSmetanine
4
69 kgDe Wilde
6
70 kgDufaux
7
60 kgSchur
8
73 kgvan Bon
9
72 kgBlijlevens
10
70 kgDe Clercq
11
66 kgKoerts
12
78 kgZamana
14
74 kgDierckxsens
15
71 kgDekker
18
66 kgVerstrepen
21
66 kgDurand
23
76 kgSeigneur
25
71 kgNijdam
28
70 kgArrieta
29
68 kgMattan
31
69 kgMarie
32
68 kg
Weight (KG) →
Result →
78
60
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | MAGNIEN Emmanuel | 68 |
2 | CAPELLE Christophe | 73 |
4 | SMETANINE Serguei | 69 |
6 | DE WILDE Etienne | 70 |
7 | DUFAUX Laurent | 60 |
8 | SCHUR Jan | 73 |
9 | VAN BON Léon | 72 |
10 | BLIJLEVENS Jeroen | 70 |
11 | DE CLERCQ Mario | 66 |
12 | KOERTS Jans | 78 |
14 | ZAMANA Cezary | 74 |
15 | DIERCKXSENS Ludo | 71 |
18 | DEKKER Erik | 66 |
21 | VERSTREPEN Johan | 66 |
23 | DURAND Jacky | 76 |
25 | SEIGNEUR Eddy | 71 |
28 | NIJDAM Jelle | 70 |
29 | ARRIETA José Luis | 68 |
31 | MATTAN Nico | 69 |
32 | MARIE Thierry | 68 |