Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Capelle
1
73 kgGaumont
2
77 kgJalabert
3
68 kgStreel
5
69 kgMoncassin
6
73 kgTeutenberg
7
66 kgBlijlevens
8
70 kgMoreau
9
77 kgMarie
11
68 kgEeckhout
13
73 kgMengin
19
68 kgBoardman
20
70 kgKnaven
21
68 kgKlöden
24
63 kgHamburger
25
58 kgDurand
26
76 kgO'Grady
29
73 kgSeigneur
32
71 kgRich
33
82 kgAus
39
75 kgJaksche
40
69 kg
1
73 kgGaumont
2
77 kgJalabert
3
68 kgStreel
5
69 kgMoncassin
6
73 kgTeutenberg
7
66 kgBlijlevens
8
70 kgMoreau
9
77 kgMarie
11
68 kgEeckhout
13
73 kgMengin
19
68 kgBoardman
20
70 kgKnaven
21
68 kgKlöden
24
63 kgHamburger
25
58 kgDurand
26
76 kgO'Grady
29
73 kgSeigneur
32
71 kgRich
33
82 kgAus
39
75 kgJaksche
40
69 kg
Weight (KG) →
Result →
82
58
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | CAPELLE Christophe | 73 |
2 | GAUMONT Philippe | 77 |
3 | JALABERT Nicolas | 68 |
5 | STREEL Marc | 69 |
6 | MONCASSIN Frédéric | 73 |
7 | TEUTENBERG Sven | 66 |
8 | BLIJLEVENS Jeroen | 70 |
9 | MOREAU Francis | 77 |
11 | MARIE Thierry | 68 |
13 | EECKHOUT Niko | 73 |
19 | MENGIN Christophe | 68 |
20 | BOARDMAN Chris | 70 |
21 | KNAVEN Servais | 68 |
24 | KLÖDEN Andreas | 63 |
25 | HAMBURGER Bo | 58 |
26 | DURAND Jacky | 76 |
29 | O'GRADY Stuart | 73 |
32 | SEIGNEUR Eddy | 71 |
33 | RICH Michael | 82 |
39 | AUS Lauri | 75 |
40 | JAKSCHE Jörg | 69 |