Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Clerc
1
71 kgO'Grady
2
73 kgKirsipuu
3
80 kgMetlushenko
4
82 kgCooke
5
75 kgHunt
8
76 kgFlickinger
9
78 kgEeckhout
11
73 kgVanthourenhout
12
65 kgAus
13
75 kgUsov
14
63 kgGaumont
17
77 kgGilmore
18
67 kgMcGee
19
72 kgHunter
20
72 kgvan Dijk
21
74 kgNazon
22
74 kgBramati
23
72 kgPiziks
24
70 kgScanlon
25
79 kg
1
71 kgO'Grady
2
73 kgKirsipuu
3
80 kgMetlushenko
4
82 kgCooke
5
75 kgHunt
8
76 kgFlickinger
9
78 kgEeckhout
11
73 kgVanthourenhout
12
65 kgAus
13
75 kgUsov
14
63 kgGaumont
17
77 kgGilmore
18
67 kgMcGee
19
72 kgHunter
20
72 kgvan Dijk
21
74 kgNazon
22
74 kgBramati
23
72 kgPiziks
24
70 kgScanlon
25
79 kg
Weight (KG) →
Result →
82
63
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | CLERC Aurélien | 71 |
2 | O'GRADY Stuart | 73 |
3 | KIRSIPUU Jaan | 80 |
4 | METLUSHENKO Yuri | 82 |
5 | COOKE Baden | 75 |
8 | HUNT Jeremy | 76 |
9 | FLICKINGER Andy | 78 |
11 | EECKHOUT Niko | 73 |
12 | VANTHOURENHOUT Sven | 65 |
13 | AUS Lauri | 75 |
14 | USOV Alexandre | 63 |
17 | GAUMONT Philippe | 77 |
18 | GILMORE Matthew | 67 |
19 | MCGEE Bradley | 72 |
20 | HUNTER Robert | 72 |
21 | VAN DIJK Stefan | 74 |
22 | NAZON Jean-Patrick | 74 |
23 | BRAMATI Davide | 72 |
24 | PIZIKS Arvis | 70 |
25 | SCANLON Mark | 79 |