Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Boonen
1
82 kgvan Dijk
2
74 kgChavanel
3
77 kgCasper
4
69 kgHushovd
5
83 kgKirsipuu
6
80 kgDe Vocht
8
78 kgCaethoven
9
67 kgKoerts
10
78 kgVanlandschoot
12
67 kgLequatre
13
64 kgCoyot
14
76 kgPencolé
15
74 kgAuger
16
78 kgHammond
17
71 kgHunter
18
72 kgTankink
19
71 kgEisel
20
74 kgSentjens
23
75 kg
1
82 kgvan Dijk
2
74 kgChavanel
3
77 kgCasper
4
69 kgHushovd
5
83 kgKirsipuu
6
80 kgDe Vocht
8
78 kgCaethoven
9
67 kgKoerts
10
78 kgVanlandschoot
12
67 kgLequatre
13
64 kgCoyot
14
76 kgPencolé
15
74 kgAuger
16
78 kgHammond
17
71 kgHunter
18
72 kgTankink
19
71 kgEisel
20
74 kgSentjens
23
75 kg
Weight (KG) →
Result →
83
64
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | VAN DIJK Stefan | 74 |
3 | CHAVANEL Sébastien | 77 |
4 | CASPER Jimmy | 69 |
5 | HUSHOVD Thor | 83 |
6 | KIRSIPUU Jaan | 80 |
8 | DE VOCHT Wim | 78 |
9 | CAETHOVEN Steven | 67 |
10 | KOERTS Jans | 78 |
12 | VANLANDSCHOOT James | 67 |
13 | LEQUATRE Geoffroy | 64 |
14 | COYOT Arnaud | 76 |
15 | PENCOLÉ Franck | 74 |
16 | AUGER Ludovic | 78 |
17 | HAMMOND Roger | 71 |
18 | HUNTER Robert | 72 |
19 | TANKINK Bram | 71 |
20 | EISEL Bernhard | 74 |
23 | SENTJENS Roy | 75 |