Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Démare
1
76 kgSinkeldam
2
77 kgCoquard
3
59 kgBarbier
4
79 kgDrucker
5
75 kgMeersman
6
63 kgVanbilsen
7
73 kgFeillu
8
62 kgVan Asbroeck
9
72 kgSbaragli
10
74 kgRobert
11
68 kgMaes
12
78 kgLeukemans
13
67 kgDaniel
14
74 kgGuardini
15
66 kgJules
16
64 kgSénéchal
17
77 kgBonnet
18
80 kgDuval
19
68 kgTheuns
20
72 kgLaengen
21
79 kgLaporte
22
76 kg
1
76 kgSinkeldam
2
77 kgCoquard
3
59 kgBarbier
4
79 kgDrucker
5
75 kgMeersman
6
63 kgVanbilsen
7
73 kgFeillu
8
62 kgVan Asbroeck
9
72 kgSbaragli
10
74 kgRobert
11
68 kgMaes
12
78 kgLeukemans
13
67 kgDaniel
14
74 kgGuardini
15
66 kgJules
16
64 kgSénéchal
17
77 kgBonnet
18
80 kgDuval
19
68 kgTheuns
20
72 kgLaengen
21
79 kgLaporte
22
76 kg
Weight (KG) →
Result →
80
59
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | SINKELDAM Ramon | 77 |
3 | COQUARD Bryan | 59 |
4 | BARBIER Rudy | 79 |
5 | DRUCKER Jempy | 75 |
6 | MEERSMAN Gianni | 63 |
7 | VANBILSEN Kenneth | 73 |
8 | FEILLU Romain | 62 |
9 | VAN ASBROECK Tom | 72 |
10 | SBARAGLI Kristian | 74 |
11 | ROBERT Fréderique | 68 |
12 | MAES Nikolas | 78 |
13 | LEUKEMANS Björn | 67 |
14 | DANIEL Maxime | 74 |
15 | GUARDINI Andrea | 66 |
16 | JULES Justin | 64 |
17 | SÉNÉCHAL Florian | 77 |
18 | BONNET William | 80 |
19 | DUVAL Julien | 68 |
20 | THEUNS Edward | 72 |
21 | LAENGEN Vegard Stake | 79 |
22 | LAPORTE Christophe | 76 |