Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Šiškevičius
1
80 kgBoeckmans
2
76 kgGuardini
4
66 kgBarbier
6
79 kgCoquard
7
59 kgMcLay
8
72 kgDe Buyst
9
72 kgJauregui
10
60 kgBagdonas
11
78 kgHivert
12
62 kgLatour
13
66 kgBauhaus
14
75 kgDelfosse
15
73 kgSchorn
16
72 kgJans
17
68 kgDémare
18
76 kgVan Lerberghe
19
83 kgMatzka
21
69 kg
1
80 kgBoeckmans
2
76 kgGuardini
4
66 kgBarbier
6
79 kgCoquard
7
59 kgMcLay
8
72 kgDe Buyst
9
72 kgJauregui
10
60 kgBagdonas
11
78 kgHivert
12
62 kgLatour
13
66 kgBauhaus
14
75 kgDelfosse
15
73 kgSchorn
16
72 kgJans
17
68 kgDémare
18
76 kgVan Lerberghe
19
83 kgMatzka
21
69 kg
Weight (KG) →
Result →
83
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ŠIŠKEVIČIUS Evaldas | 80 |
2 | BOECKMANS Kris | 76 |
4 | GUARDINI Andrea | 66 |
6 | BARBIER Rudy | 79 |
7 | COQUARD Bryan | 59 |
8 | MCLAY Daniel | 72 |
9 | DE BUYST Jasper | 72 |
10 | JAUREGUI Quentin | 60 |
11 | BAGDONAS Gediminas | 78 |
12 | HIVERT Jonathan | 62 |
13 | LATOUR Pierre | 66 |
14 | BAUHAUS Phil | 75 |
15 | DELFOSSE Sébastien | 73 |
16 | SCHORN Daniel | 72 |
17 | JANS Roy | 68 |
18 | DÉMARE Arnaud | 76 |
19 | VAN LERBERGHE Bert | 83 |
21 | MATZKA Ralf | 69 |