Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 10
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Bouhanni
1
65 kgDebusschere
2
77 kgLadagnous
3
73 kgDevriendt
4
70 kgEnger
5
69 kgDehaes
6
73 kgDelfosse
7
73 kgDuque
8
59 kgJauregui
9
60 kgMcLay
10
72 kgGuardini
11
66 kgReza
12
71 kgLoubet
13
66 kgPellaud
14
70 kgLang
15
73 kgPlanckaert
16
65 kgCalmejane
17
70 kgLaporte
18
76 kg
1
65 kgDebusschere
2
77 kgLadagnous
3
73 kgDevriendt
4
70 kgEnger
5
69 kgDehaes
6
73 kgDelfosse
7
73 kgDuque
8
59 kgJauregui
9
60 kgMcLay
10
72 kgGuardini
11
66 kgReza
12
71 kgLoubet
13
66 kgPellaud
14
70 kgLang
15
73 kgPlanckaert
16
65 kgCalmejane
17
70 kgLaporte
18
76 kg
Weight (KG) →
Result →
77
59
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | BOUHANNI Nacer | 65 |
2 | DEBUSSCHERE Jens | 77 |
3 | LADAGNOUS Matthieu | 73 |
4 | DEVRIENDT Tom | 70 |
5 | ENGER Sondre Holst | 69 |
6 | DEHAES Kenny | 73 |
7 | DELFOSSE Sébastien | 73 |
8 | DUQUE Leonardo Fabio | 59 |
9 | JAUREGUI Quentin | 60 |
10 | MCLAY Daniel | 72 |
11 | GUARDINI Andrea | 66 |
12 | REZA Kévin | 71 |
13 | LOUBET Julien | 66 |
14 | PELLAUD Simon | 70 |
15 | LANG Pirmin | 73 |
16 | PLANCKAERT Baptiste | 65 |
17 | CALMEJANE Lilian | 70 |
18 | LAPORTE Christophe | 76 |