Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 22
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Spruch
1
68 kgGuidi
2
73 kgBaranowski
3
68 kgBrożyna
5
65 kgVainšteins
6
72 kgSypytkowski
8
76 kgPiccoli
11
64 kgRadaelli
12
67 kgSilovs
15
79 kgRomanik
22
62 kgChmielewski
24
72 kgJemison
25
71 kgBramati
26
72 kgPiątek
27
71 kgMickiewicz
29
74 kgSerpellini
34
75 kgAxelsson
35
73 kgde Jongh
40
76 kgPankov
42
72 kgGono
47
69 kgMcRae
48
62 kgPrzydział
49
80 kg
1
68 kgGuidi
2
73 kgBaranowski
3
68 kgBrożyna
5
65 kgVainšteins
6
72 kgSypytkowski
8
76 kgPiccoli
11
64 kgRadaelli
12
67 kgSilovs
15
79 kgRomanik
22
62 kgChmielewski
24
72 kgJemison
25
71 kgBramati
26
72 kgPiątek
27
71 kgMickiewicz
29
74 kgSerpellini
34
75 kgAxelsson
35
73 kgde Jongh
40
76 kgPankov
42
72 kgGono
47
69 kgMcRae
48
62 kgPrzydział
49
80 kg
Weight (KG) →
Result →
80
62
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | SPRUCH Zbigniew | 68 |
2 | GUIDI Fabrizio | 73 |
3 | BARANOWSKI Dariusz | 68 |
5 | BROŻYNA Tomasz | 65 |
6 | VAINŠTEINS Romāns | 72 |
8 | SYPYTKOWSKI Andrzej | 76 |
11 | PICCOLI Mariano | 64 |
12 | RADAELLI Mauro | 67 |
15 | SILOVS Juris | 79 |
22 | ROMANIK Radosław | 62 |
24 | CHMIELEWSKI Piotr | 72 |
25 | JEMISON Marty | 71 |
26 | BRAMATI Davide | 72 |
27 | PIĄTEK Zbigniew | 71 |
29 | MICKIEWICZ Jacek | 74 |
34 | SERPELLINI Marco | 75 |
35 | AXELSSON Niklas | 73 |
40 | DE JONGH Steven | 76 |
42 | PANKOV Oleg | 72 |
47 | GONO Marcel | 69 |
48 | MCRAE William Chann | 62 |
49 | PRZYDZIAŁ Piotr | 80 |