Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Huzarski
1
69 kgPosthuma
2
76 kgBruseghin
3
70 kgKreuziger
5
65 kgPinotti
6
67 kgKrauß
7
81 kgLe Mével
8
61 kgChavanel
9
73 kgNiemiec
11
62 kgZaugg
12
58 kgGuesdon
13
73 kgWegmann
15
60 kgJohansen
16
78 kgMoreni
17
65 kgRutkiewicz
20
66 kgPortal
21
70 kgWesemann
23
72 kgEfimkin
24
67 kgKirchen
25
68 kg
1
69 kgPosthuma
2
76 kgBruseghin
3
70 kgKreuziger
5
65 kgPinotti
6
67 kgKrauß
7
81 kgLe Mével
8
61 kgChavanel
9
73 kgNiemiec
11
62 kgZaugg
12
58 kgGuesdon
13
73 kgWegmann
15
60 kgJohansen
16
78 kgMoreni
17
65 kgRutkiewicz
20
66 kgPortal
21
70 kgWesemann
23
72 kgEfimkin
24
67 kgKirchen
25
68 kg
Weight (KG) →
Result →
81
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HUZARSKI Bartosz | 69 |
2 | POSTHUMA Joost | 76 |
3 | BRUSEGHIN Marzio | 70 |
5 | KREUZIGER Roman | 65 |
6 | PINOTTI Marco | 67 |
7 | KRAUß Sven | 81 |
8 | LE MÉVEL Christophe | 61 |
9 | CHAVANEL Sylvain | 73 |
11 | NIEMIEC Przemysław | 62 |
12 | ZAUGG Oliver | 58 |
13 | GUESDON Frédéric | 73 |
15 | WEGMANN Fabian | 60 |
16 | JOHANSEN Allan | 78 |
17 | MORENI Cristian | 65 |
20 | RUTKIEWICZ Marek | 66 |
21 | PORTAL Nicolas | 70 |
23 | WESEMANN Steffen | 72 |
24 | EFIMKIN Vladimir | 67 |
25 | KIRCHEN Kim | 68 |