Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Hutarovich
1
71 kgMaikin
2
68 kgMori
3
62 kgBoivin
4
78 kgHaller
5
72 kgMaes
6
78 kgVallée
7
79 kgLander
8
70 kgFormolo
9
62 kgGasparotto
10
65 kgStępniak
11
75 kgBrambilla
12
57 kgMeier
13
61 kgBos
14
77 kgKritskiy
15
81 kgNerz
16
67 kgAmador
17
73 kgPoljański
18
63 kgVuillermoz
19
60 kgMatysiak
20
71 kg
1
71 kgMaikin
2
68 kgMori
3
62 kgBoivin
4
78 kgHaller
5
72 kgMaes
6
78 kgVallée
7
79 kgLander
8
70 kgFormolo
9
62 kgGasparotto
10
65 kgStępniak
11
75 kgBrambilla
12
57 kgMeier
13
61 kgBos
14
77 kgKritskiy
15
81 kgNerz
16
67 kgAmador
17
73 kgPoljański
18
63 kgVuillermoz
19
60 kgMatysiak
20
71 kg
Weight (KG) →
Result →
81
57
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | HUTAROVICH Yauheni | 71 |
2 | MAIKIN Roman | 68 |
3 | MORI Manuele | 62 |
4 | BOIVIN Guillaume | 78 |
5 | HALLER Marco | 72 |
6 | MAES Nikolas | 78 |
7 | VALLÉE Boris | 79 |
8 | LANDER Sebastian | 70 |
9 | FORMOLO Davide | 62 |
10 | GASPAROTTO Enrico | 65 |
11 | STĘPNIAK Grzegorz | 75 |
12 | BRAMBILLA Gianluca | 57 |
13 | MEIER Christian | 61 |
14 | BOS Theo | 77 |
15 | KRITSKIY Timofey | 81 |
16 | NERZ Dominik | 67 |
17 | AMADOR Andrey | 73 |
18 | POLJAŃSKI Paweł | 63 |
19 | VUILLERMOZ Alexis | 60 |
20 | MATYSIAK Bartłomiej | 71 |