Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kittel
1
82 kgEwan
2
69 kgBonifazio
3
72 kgvan Winden
4
70 kgTurgot
5
73 kgBoeckmans
6
76 kgGuardini
7
66 kgManzin
8
69 kgKwiatkowski
9
68 kgIzagirre
10
60 kgBystrøm
11
73 kgNizzolo
12
72 kgPuccio
13
68 kgBrambilla
14
57 kgKišerlovski
15
72 kgArndt
16
77.5 kgBurghardt
17
75 kgVan Asbroeck
18
72 kgLutsenko
19
74 kgFormolo
20
62 kgZieliński
21
61 kg
1
82 kgEwan
2
69 kgBonifazio
3
72 kgvan Winden
4
70 kgTurgot
5
73 kgBoeckmans
6
76 kgGuardini
7
66 kgManzin
8
69 kgKwiatkowski
9
68 kgIzagirre
10
60 kgBystrøm
11
73 kgNizzolo
12
72 kgPuccio
13
68 kgBrambilla
14
57 kgKišerlovski
15
72 kgArndt
16
77.5 kgBurghardt
17
75 kgVan Asbroeck
18
72 kgLutsenko
19
74 kgFormolo
20
62 kgZieliński
21
61 kg
Weight (KG) →
Result →
82
57
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | KITTEL Marcel | 82 |
2 | EWAN Caleb | 69 |
3 | BONIFAZIO Niccolò | 72 |
4 | VAN WINDEN Dennis | 70 |
5 | TURGOT Sébastien | 73 |
6 | BOECKMANS Kris | 76 |
7 | GUARDINI Andrea | 66 |
8 | MANZIN Lorrenzo | 69 |
9 | KWIATKOWSKI Michał | 68 |
10 | IZAGIRRE Ion | 60 |
11 | BYSTRØM Sven Erik | 73 |
12 | NIZZOLO Giacomo | 72 |
13 | PUCCIO Salvatore | 68 |
14 | BRAMBILLA Gianluca | 57 |
15 | KIŠERLOVSKI Robert | 72 |
16 | ARNDT Nikias | 77.5 |
17 | BURGHARDT Marcus | 75 |
18 | VAN ASBROECK Tom | 72 |
19 | LUTSENKO Alexey | 74 |
20 | FORMOLO Davide | 62 |
21 | ZIELIńSKI Kamil | 61 |