Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Ackermann
1
78 kgHodeg
2
76 kgTrentin
3
74 kgNizzolo
4
72 kgvan Poppel
5
82 kgTeunissen
6
73 kgConsonni
7
60 kgVenturini
8
60 kgPaterski
9
73 kgFranczak
10
63 kgBoasson Hagen
11
75 kgPorsev
12
80 kgBouhanni
13
65 kgBonifazio
14
72 kgRoelandts
15
78 kgBiermans
16
78 kgHaas
17
71 kgYates
18
58 kgOomen
19
65 kgWiśniowski
20
78 kg
1
78 kgHodeg
2
76 kgTrentin
3
74 kgNizzolo
4
72 kgvan Poppel
5
82 kgTeunissen
6
73 kgConsonni
7
60 kgVenturini
8
60 kgPaterski
9
73 kgFranczak
10
63 kgBoasson Hagen
11
75 kgPorsev
12
80 kgBouhanni
13
65 kgBonifazio
14
72 kgRoelandts
15
78 kgBiermans
16
78 kgHaas
17
71 kgYates
18
58 kgOomen
19
65 kgWiśniowski
20
78 kg
Weight (KG) →
Result →
82
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | ACKERMANN Pascal | 78 |
2 | HODEG Álvaro José | 76 |
3 | TRENTIN Matteo | 74 |
4 | NIZZOLO Giacomo | 72 |
5 | VAN POPPEL Danny | 82 |
6 | TEUNISSEN Mike | 73 |
7 | CONSONNI Simone | 60 |
8 | VENTURINI Clément | 60 |
9 | PATERSKI Maciej | 73 |
10 | FRANCZAK Paweł | 63 |
11 | BOASSON HAGEN Edvald | 75 |
12 | PORSEV Alexander | 80 |
13 | BOUHANNI Nacer | 65 |
14 | BONIFAZIO Niccolò | 72 |
15 | ROELANDTS Jürgen | 78 |
16 | BIERMANS Jenthe | 78 |
17 | HAAS Nathan | 71 |
18 | YATES Simon | 58 |
19 | OOMEN Sam | 65 |
20 | WIŚNIOWSKI Łukasz | 78 |