Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Kooij
1
72 kgBauhaus
2
75 kgMeeus
3
80 kgTeunissen
4
73 kgMolano
5
72 kgKanter
6
68 kgGroves
7
76 kgCavendish
8
70 kgDémare
9
76 kgBayer
10
71 kgHayter
11
70 kgSarreau
12
76 kgVendrame
13
60 kgBennett
14
73 kgThijssen
15
74 kgMareczko
16
67 kgvan den Berg
17
73 kgPeron
18
70 kgBohli
19
71 kgSobrero
20
63 kg
1
72 kgBauhaus
2
75 kgMeeus
3
80 kgTeunissen
4
73 kgMolano
5
72 kgKanter
6
68 kgGroves
7
76 kgCavendish
8
70 kgDémare
9
76 kgBayer
10
71 kgHayter
11
70 kgSarreau
12
76 kgVendrame
13
60 kgBennett
14
73 kgThijssen
15
74 kgMareczko
16
67 kgvan den Berg
17
73 kgPeron
18
70 kgBohli
19
71 kgSobrero
20
63 kg
Weight (KG) →
Result →
80
60
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
2 | BAUHAUS Phil | 75 |
3 | MEEUS Jordi | 80 |
4 | TEUNISSEN Mike | 73 |
5 | MOLANO Juan Sebastián | 72 |
6 | KANTER Max | 68 |
7 | GROVES Kaden | 76 |
8 | CAVENDISH Mark | 70 |
9 | DÉMARE Arnaud | 76 |
10 | BAYER Tobias | 71 |
11 | HAYTER Ethan | 70 |
12 | SARREAU Marc | 76 |
13 | VENDRAME Andrea | 60 |
14 | BENNETT Sam | 73 |
15 | THIJSSEN Gerben | 74 |
16 | MARECZKO Jakub | 67 |
17 | VAN DEN BERG Marijn | 73 |
18 | PERON Andrea | 70 |
19 | BOHLI Tom | 71 |
20 | SOBRERO Matteo | 63 |