Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Merlier
1
76 kgKooij
2
72 kgGaviria
3
71 kgBennett
4
73 kgWalscheid
5
90 kgPaterski
6
73 kgAniołkowski
7
68 kgAberasturi
8
69 kgMareczko
9
67 kgThijssen
10
74 kgvan den Berg
12
73 kgMoschetti
13
73 kgvan Dijke
14
74 kgGovekar
16
73 kgMartinelli
17
71 kgAllegaert
18
70 kgGautherat
19
70 kg
1
76 kgKooij
2
72 kgGaviria
3
71 kgBennett
4
73 kgWalscheid
5
90 kgPaterski
6
73 kgAniołkowski
7
68 kgAberasturi
8
69 kgMareczko
9
67 kgThijssen
10
74 kgvan den Berg
12
73 kgMoschetti
13
73 kgvan Dijke
14
74 kgGovekar
16
73 kgMartinelli
17
71 kgAllegaert
18
70 kgGautherat
19
70 kg
Weight (KG) →
Result →
90
67
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | MERLIER Tim | 76 |
2 | KOOIJ Olav | 72 |
3 | GAVIRIA Fernando | 71 |
4 | BENNETT Sam | 73 |
5 | WALSCHEID Max | 90 |
6 | PATERSKI Maciej | 73 |
7 | ANIOŁKOWSKI Stanisław | 68 |
8 | ABERASTURI Jon | 69 |
9 | MARECZKO Jakub | 67 |
10 | THIJSSEN Gerben | 74 |
12 | VAN DEN BERG Marijn | 73 |
13 | MOSCHETTI Matteo | 73 |
14 | VAN DIJKE Mick | 74 |
16 | GOVEKAR Matevž | 73 |
17 | MARTINELLI Davide | 71 |
18 | ALLEGAERT Piet | 70 |
19 | GAUTHERAT Pierre | 70 |