Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Paluta
1
65 kgDillier
2
75 kgMaas
3
70 kgFormolo
4
62 kgRyan
5
56 kgBattistella
6
67 kgKelderman
7
65 kgVingegaard
8
58 kgJacobs
9
78 kgOnley
10
62 kgBanaszek
11
75 kgvan Dijke
12
74 kgFoss
13
74 kgGrégoire
14
64 kgMärkl
15
70 kgGieryk
16
71 kgWellens
17
71 kgReinderink
18
67 kgDeclercq
19
78 kgKuzmin
20
66 kgHoule
21
72 kg
1
65 kgDillier
2
75 kgMaas
3
70 kgFormolo
4
62 kgRyan
5
56 kgBattistella
6
67 kgKelderman
7
65 kgVingegaard
8
58 kgJacobs
9
78 kgOnley
10
62 kgBanaszek
11
75 kgvan Dijke
12
74 kgFoss
13
74 kgGrégoire
14
64 kgMärkl
15
70 kgGieryk
16
71 kgWellens
17
71 kgReinderink
18
67 kgDeclercq
19
78 kgKuzmin
20
66 kgHoule
21
72 kg
Weight (KG) →
Result →
78
56
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | PALUTA Michał | 65 |
2 | DILLIER Silvan | 75 |
3 | MAAS Jan | 70 |
4 | FORMOLO Davide | 62 |
5 | RYAN Archie | 56 |
6 | BATTISTELLA Samuele | 67 |
7 | KELDERMAN Wilco | 65 |
8 | VINGEGAARD Jonas | 58 |
9 | JACOBS Johan | 78 |
10 | ONLEY Oscar | 62 |
11 | BANASZEK Norbert | 75 |
12 | VAN DIJKE Mick | 74 |
13 | FOSS Tobias | 74 |
14 | GRÉGOIRE Romain | 64 |
15 | MÄRKL Niklas | 70 |
16 | GIERYK Kacper | 71 |
17 | WELLENS Tim | 71 |
18 | REINDERINK Pepijn | 67 |
19 | DECLERCQ Tim | 78 |
20 | KUZMIN Anton | 66 |
21 | HOULE Hugo | 72 |