Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Nys
1
64 kgKelderman
2
65 kgVingegaard
4
58 kgMohorič
5
71 kgUlissi
6
63 kgGrégoire
7
64 kgFuglsang
8
67 kgMajka
9
62 kgConci
10
68 kgZambanini
11
62 kgHonoré
12
68 kgSheffield
13
73 kgDonovan
14
70 kgScaroni
15
63 kgHermans
16
72 kgVoisard
17
56 kgParet-Peintre
18
64 kgGarcía Pierna
19
67 kgFormolo
20
62 kg
1
64 kgKelderman
2
65 kgVingegaard
4
58 kgMohorič
5
71 kgUlissi
6
63 kgGrégoire
7
64 kgFuglsang
8
67 kgMajka
9
62 kgConci
10
68 kgZambanini
11
62 kgHonoré
12
68 kgSheffield
13
73 kgDonovan
14
70 kgScaroni
15
63 kgHermans
16
72 kgVoisard
17
56 kgParet-Peintre
18
64 kgGarcía Pierna
19
67 kgFormolo
20
62 kg
Weight (KG) →
Result →
73
56
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | NYS Thibau | 64 |
2 | KELDERMAN Wilco | 65 |
4 | VINGEGAARD Jonas | 58 |
5 | MOHORIČ Matej | 71 |
6 | ULISSI Diego | 63 |
7 | GRÉGOIRE Romain | 64 |
8 | FUGLSANG Jakob | 67 |
9 | MAJKA Rafał | 62 |
10 | CONCI Nicola | 68 |
11 | ZAMBANINI Edoardo | 62 |
12 | HONORÉ Mikkel Frølich | 68 |
13 | SHEFFIELD Magnus | 73 |
14 | DONOVAN Mark | 70 |
15 | SCARONI Christian | 63 |
16 | HERMANS Ben | 72 |
17 | VOISARD Yannis | 56 |
18 | PARET-PEINTRE Aurélien | 64 |
19 | GARCÍA PIERNA Raúl | 67 |
20 | FORMOLO Davide | 62 |