Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -40.8 * weight + 3092
This means that on average for every extra kilogram weight a rider loses -40.8 positions in the result.
Kooij
1
72 kgMagnier
2
70 kgPlowright
3
80 kgZijlaard
4
73 kgVernon
5
74 kgAniołkowski
6
68 kgTurner
7
74 kgVermeersch
8
81 kgKanter
9
68 kgPedersen
10
74 kgThijssen
11
74 kgMihkels
12
75 kgVan Mechelen
13
78 kgGaviria
14
71 kgEpis
16
64 kgPomorski
17
76 kgGazzoli
18
76 kgStosz
19
70 kgMolard
991
62 kgSerrano
991
65 kgBrennan
991
68 kg
1
72 kgMagnier
2
70 kgPlowright
3
80 kgZijlaard
4
73 kgVernon
5
74 kgAniołkowski
6
68 kgTurner
7
74 kgVermeersch
8
81 kgKanter
9
68 kgPedersen
10
74 kgThijssen
11
74 kgMihkels
12
75 kgVan Mechelen
13
78 kgGaviria
14
71 kgEpis
16
64 kgPomorski
17
76 kgGazzoli
18
76 kgStosz
19
70 kgMolard
991
62 kgSerrano
991
65 kgBrennan
991
68 kg
Weight (KG) →
Result →
81
62
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
2 | MAGNIER Paul | 70 |
3 | PLOWRIGHT Jensen | 80 |
4 | ZIJLAARD Maikel | 73 |
5 | VERNON Ethan | 74 |
6 | ANIOŁKOWSKI Stanisław | 68 |
7 | TURNER Ben | 74 |
8 | VERMEERSCH Florian | 81 |
9 | KANTER Max | 68 |
10 | PEDERSEN Rasmus Søjberg | 74 |
11 | THIJSSEN Gerben | 74 |
12 | MIHKELS Madis | 75 |
13 | VAN MECHELEN Vlad | 78 |
14 | GAVIRIA Fernando | 71 |
16 | EPIS Giosuè | 64 |
17 | POMORSKI Michał | 76 |
18 | GAZZOLI Michele | 76 |
19 | STOSZ Patryk | 70 |
991 | MOLARD Rudy | 62 |
991 | SERRANO Gonzalo | 65 |
991 | BRENNAN Matthew | 68 |