Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Knudsen
3
79 kgMerckx
14
74 kgZoetemelk
17
68 kgPollentier
18
62 kgBaronchelli
19
72 kgPfenninger
22
70 kgSutter
23
70 kgBourreau
24
63 kgRiccomi
25
66 kgParenteau
32
68 kgGodefroot
36
73 kgOvion
42
64 kgVan Impe
44
59 kgMartin
46
62 kgSercu
50
76 kgElorriaga
57
85 kgGavazzi
58
67 kg
3
79 kgMerckx
14
74 kgZoetemelk
17
68 kgPollentier
18
62 kgBaronchelli
19
72 kgPfenninger
22
70 kgSutter
23
70 kgBourreau
24
63 kgRiccomi
25
66 kgParenteau
32
68 kgGodefroot
36
73 kgOvion
42
64 kgVan Impe
44
59 kgMartin
46
62 kgSercu
50
76 kgElorriaga
57
85 kgGavazzi
58
67 kg
Weight (KG) →
Result →
85
59
3
58
# | Rider | Weight (KG) |
---|---|---|
3 | KNUDSEN Knut | 79 |
14 | MERCKX Eddy | 74 |
17 | ZOETEMELK Joop | 68 |
18 | POLLENTIER Michel | 62 |
19 | BARONCHELLI Gianbattista | 72 |
22 | PFENNINGER Louis | 70 |
23 | SUTTER Ueli | 70 |
24 | BOURREAU Bernard | 63 |
25 | RICCOMI Walter | 66 |
32 | PARENTEAU Jean-Pierre | 68 |
36 | GODEFROOT Walter | 73 |
42 | OVION Régis | 64 |
44 | VAN IMPE Lucien | 59 |
46 | MARTIN Raymond | 62 |
50 | SERCU Patrick | 76 |
57 | ELORRIAGA Javier Francisco | 85 |
58 | GAVAZZI Pierino | 67 |