Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -10.3 * weight + 1415
This means that on average for every extra kilogram weight a rider loses -10.3 positions in the result.
Sercu
1
76 kgGodefroot
2
73 kgMerckx
3
74 kgBourreau
6
63 kgZoetemelk
36
68 kgBaronchelli
990
72 kgRiccomi
990
66 kgElorriaga
990
85 kgPfenninger
990
70 kgSutter
990
70 kgVan Impe
990
59 kgKnudsen
990
79 kgPollentier
990
62 kgParenteau
990
68 kgOvion
990
64 kgMartin
990
62 kgGavazzi
990
67 kg
1
76 kgGodefroot
2
73 kgMerckx
3
74 kgBourreau
6
63 kgZoetemelk
36
68 kgBaronchelli
990
72 kgRiccomi
990
66 kgElorriaga
990
85 kgPfenninger
990
70 kgSutter
990
70 kgVan Impe
990
59 kgKnudsen
990
79 kgPollentier
990
62 kgParenteau
990
68 kgOvion
990
64 kgMartin
990
62 kgGavazzi
990
67 kg
Weight (KG) →
Result →
85
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | SERCU Patrick | 76 |
2 | GODEFROOT Walter | 73 |
3 | MERCKX Eddy | 74 |
6 | BOURREAU Bernard | 63 |
36 | ZOETEMELK Joop | 68 |
990 | BARONCHELLI Gianbattista | 72 |
990 | RICCOMI Walter | 66 |
990 | ELORRIAGA Javier Francisco | 85 |
990 | PFENNINGER Louis | 70 |
990 | SUTTER Ueli | 70 |
990 | VAN IMPE Lucien | 59 |
990 | KNUDSEN Knut | 79 |
990 | POLLENTIER Michel | 62 |
990 | PARENTEAU Jean-Pierre | 68 |
990 | OVION Régis | 64 |
990 | MARTIN Raymond | 62 |
990 | GAVAZZI Pierino | 67 |