Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Roche
1
74 kgWinnen
8
60 kgJärmann
10
73 kgKuiper
20
69 kgSchepers
22
60 kgBreukink
23
70 kgTrinkler
27
67 kgGiupponi
35
60 kgVandi
36
64 kgHodge
37
74 kgSkibby
44
70 kgSaronni
45
65 kgDemierre
46
70 kgde Rooij
49
69 kgChevallier
52
69 kgGianetti
57
62 kgHolm Sørensen
69
77 kg
1
74 kgWinnen
8
60 kgJärmann
10
73 kgKuiper
20
69 kgSchepers
22
60 kgBreukink
23
70 kgTrinkler
27
67 kgGiupponi
35
60 kgVandi
36
64 kgHodge
37
74 kgSkibby
44
70 kgSaronni
45
65 kgDemierre
46
70 kgde Rooij
49
69 kgChevallier
52
69 kgGianetti
57
62 kgHolm Sørensen
69
77 kg
Weight (KG) →
Result →
77
60
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | ROCHE Stephen | 74 |
8 | WINNEN Peter | 60 |
10 | JÄRMANN Rolf | 73 |
20 | KUIPER Hennie | 69 |
22 | SCHEPERS Eddy | 60 |
23 | BREUKINK Erik | 70 |
27 | TRINKLER Richard | 67 |
35 | GIUPPONI Flavio | 60 |
36 | VANDI Alfio | 64 |
37 | HODGE Stephen | 74 |
44 | SKIBBY Jesper | 70 |
45 | SARONNI Giuseppe | 65 |
46 | DEMIERRE Serge | 70 |
49 | DE ROOIJ Theo | 69 |
52 | CHEVALLIER Philippe | 69 |
57 | GIANETTI Mauro | 62 |
69 | HOLM SØRENSEN Brian | 77 |