Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Olano
1
70 kgDjavanian
2
64 kgRebellin
3
63 kgGontchenkov
4
74 kgRichard
6
67 kgZberg
7
72 kgHeulot
8
69 kgBortolami
9
73 kgSimon
10
70 kgGuidi
12
73 kgDi Grande
13
58 kgGianetti
14
62 kgGuerini
15
65 kgBerzin
16
64 kgChiappucci
17
67 kgTonkov
18
70 kgUgrumov
19
58 kgCasagrande
20
64 kg
1
70 kgDjavanian
2
64 kgRebellin
3
63 kgGontchenkov
4
74 kgRichard
6
67 kgZberg
7
72 kgHeulot
8
69 kgBortolami
9
73 kgSimon
10
70 kgGuidi
12
73 kgDi Grande
13
58 kgGianetti
14
62 kgGuerini
15
65 kgBerzin
16
64 kgChiappucci
17
67 kgTonkov
18
70 kgUgrumov
19
58 kgCasagrande
20
64 kg
Weight (KG) →
Result →
74
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | OLANO Abraham | 70 |
2 | DJAVANIAN Viatcheslav | 64 |
3 | REBELLIN Davide | 63 |
4 | GONTCHENKOV Alexander | 74 |
6 | RICHARD Pascal | 67 |
7 | ZBERG Beat | 72 |
8 | HEULOT Stéphane | 69 |
9 | BORTOLAMI Gianluca | 73 |
10 | SIMON François | 70 |
12 | GUIDI Fabrizio | 73 |
13 | DI GRANDE Giuseppe | 58 |
14 | GIANETTI Mauro | 62 |
15 | GUERINI Giuseppe | 65 |
16 | BERZIN Evgeni | 64 |
17 | CHIAPPUCCI Claudio | 67 |
18 | TONKOV Pavel | 70 |
19 | UGRUMOV Piotr | 58 |
20 | CASAGRANDE Francesco | 64 |