Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Pinot
1
63 kgYates
2
58 kgQuintana
3
58 kgBardet
4
65 kgDennis
5
72 kgPoljański
6
63 kgHansen
7
60 kgGrmay
8
63 kgSenni
9
60 kgLudvigsson
10
76 kgKüng
11
83 kgChernetski
12
63 kgVan der Sande
13
67 kgGuillemois
14
66 kgWarbasse
15
67 kgFlakemore
16
72 kgAlafaci
17
77 kgRowe
18
72 kgSilvestre
19
78 kgVorobyev
20
74 kgBroeckx
21
73 kgVan Asbroeck
22
72 kg
1
63 kgYates
2
58 kgQuintana
3
58 kgBardet
4
65 kgDennis
5
72 kgPoljański
6
63 kgHansen
7
60 kgGrmay
8
63 kgSenni
9
60 kgLudvigsson
10
76 kgKüng
11
83 kgChernetski
12
63 kgVan der Sande
13
67 kgGuillemois
14
66 kgWarbasse
15
67 kgFlakemore
16
72 kgAlafaci
17
77 kgRowe
18
72 kgSilvestre
19
78 kgVorobyev
20
74 kgBroeckx
21
73 kgVan Asbroeck
22
72 kg
Weight (KG) →
Result →
83
58
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | PINOT Thibaut | 63 |
2 | YATES Simon | 58 |
3 | QUINTANA Nairo | 58 |
4 | BARDET Romain | 65 |
5 | DENNIS Rohan | 72 |
6 | POLJAŃSKI Paweł | 63 |
7 | HANSEN Jesper | 60 |
8 | GRMAY Tsgabu | 63 |
9 | SENNI Manuel | 60 |
10 | LUDVIGSSON Tobias | 76 |
11 | KÜNG Stefan | 83 |
12 | CHERNETSKI Sergei | 63 |
13 | VAN DER SANDE Tosh | 67 |
14 | GUILLEMOIS Romain | 66 |
15 | WARBASSE Larry | 67 |
16 | FLAKEMORE Campbell | 72 |
17 | ALAFACI Eugenio | 77 |
18 | ROWE Luke | 72 |
19 | SILVESTRE Fábio | 78 |
20 | VOROBYEV Anton | 74 |
21 | BROECKX Stig | 73 |
22 | VAN ASBROECK Tom | 72 |