Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
De Gendt
1
73 kgBernal
2
60 kgCarthy
3
69 kgRoglič
4
65 kgNieve
5
62 kgDuchesne
6
75 kgGougeard
7
70 kgSivakov
8
70 kgPorte
9
62 kgCosta
10
69 kgPernsteiner
11
55 kgKruijswijk
12
63 kgMertz
13
70 kgBrown
14
65 kgAnacona
15
65 kgAmador
16
73 kgVerona
17
68 kgGrivko
18
70 kgStorer
19
63 kgClarke
20
81 kg
1
73 kgBernal
2
60 kgCarthy
3
69 kgRoglič
4
65 kgNieve
5
62 kgDuchesne
6
75 kgGougeard
7
70 kgSivakov
8
70 kgPorte
9
62 kgCosta
10
69 kgPernsteiner
11
55 kgKruijswijk
12
63 kgMertz
13
70 kgBrown
14
65 kgAnacona
15
65 kgAmador
16
73 kgVerona
17
68 kgGrivko
18
70 kgStorer
19
63 kgClarke
20
81 kg
Weight (KG) →
Result →
81
55
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
2 | BERNAL Egan | 60 |
3 | CARTHY Hugh | 69 |
4 | ROGLIČ Primož | 65 |
5 | NIEVE Mikel | 62 |
6 | DUCHESNE Antoine | 75 |
7 | GOUGEARD Alexis | 70 |
8 | SIVAKOV Pavel | 70 |
9 | PORTE Richie | 62 |
10 | COSTA Rui | 69 |
11 | PERNSTEINER Hermann | 55 |
12 | KRUIJSWIJK Steven | 63 |
13 | MERTZ Rémy | 70 |
14 | BROWN Nathan | 65 |
15 | ANACONA Winner | 65 |
16 | AMADOR Andrey | 73 |
17 | VERONA Carlos | 68 |
18 | GRIVKO Andrey | 70 |
19 | STORER Michael | 63 |
20 | CLARKE Will | 81 |