Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 22
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Bernal
1
60 kgMartínez
2
63 kgGaudu
3
53 kgKudus
4
58 kgHamilton
5
71 kgPower
6
68 kgGhebreigzabhier
7
68 kgCarthy
8
69 kgFabbro
9
52 kgSivakov
10
70 kgMertz
11
70 kgConci
12
68 kgFrankiny
13
67 kgShaw
14
63 kgVincent
15
62 kgStorer
16
63 kgThomas
17
68 kgDenz
18
71 kgBohli
19
71 kgEiking
20
75 kgDlamini
21
66 kgAckermann
22
78 kgDaniel
23
64 kg
1
60 kgMartínez
2
63 kgGaudu
3
53 kgKudus
4
58 kgHamilton
5
71 kgPower
6
68 kgGhebreigzabhier
7
68 kgCarthy
8
69 kgFabbro
9
52 kgSivakov
10
70 kgMertz
11
70 kgConci
12
68 kgFrankiny
13
67 kgShaw
14
63 kgVincent
15
62 kgStorer
16
63 kgThomas
17
68 kgDenz
18
71 kgBohli
19
71 kgEiking
20
75 kgDlamini
21
66 kgAckermann
22
78 kgDaniel
23
64 kg
Weight (KG) →
Result →
78
52
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BERNAL Egan | 60 |
2 | MARTÍNEZ Daniel Felipe | 63 |
3 | GAUDU David | 53 |
4 | KUDUS Merhawi | 58 |
5 | HAMILTON Lucas | 71 |
6 | POWER Robert | 68 |
7 | GHEBREIGZABHIER Amanuel | 68 |
8 | CARTHY Hugh | 69 |
9 | FABBRO Matteo | 52 |
10 | SIVAKOV Pavel | 70 |
11 | MERTZ Rémy | 70 |
12 | CONCI Nicola | 68 |
13 | FRANKINY Kilian | 67 |
14 | SHAW James | 63 |
15 | VINCENT Léo | 62 |
16 | STORER Michael | 63 |
17 | THOMAS Benjamin | 68 |
18 | DENZ Nico | 71 |
19 | BOHLI Tom | 71 |
20 | EIKING Odd Christian | 75 |
21 | DLAMINI Nic | 66 |
22 | ACKERMANN Pascal | 78 |
23 | DANIEL Gregory | 64 |