Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Hollmann
1
70 kgMasnada
3
65 kgOliveira
4
67 kgVendrame
5
60 kgGarcía Pierna
6
67 kgCarapaz
7
62 kgBerthet
8
68 kgRodríguez
9
67 kgCavagna
10
78 kgBrenner
11
59 kgBalmer
12
70 kgNys
13
64 kgLipowitz
14
68 kgAdrià
15
64 kgAsgreen
16
75 kgMas
17
61 kgSivakov
18
70 kgRafferty
19
65 kgRosskopf
20
74 kgVlasov
21
68 kgBernal
22
60 kgHayter
23
70 kgArensman
24
68 kgCastroviejo
25
62 kg
1
70 kgMasnada
3
65 kgOliveira
4
67 kgVendrame
5
60 kgGarcía Pierna
6
67 kgCarapaz
7
62 kgBerthet
8
68 kgRodríguez
9
67 kgCavagna
10
78 kgBrenner
11
59 kgBalmer
12
70 kgNys
13
64 kgLipowitz
14
68 kgAdrià
15
64 kgAsgreen
16
75 kgMas
17
61 kgSivakov
18
70 kgRafferty
19
65 kgRosskopf
20
74 kgVlasov
21
68 kgBernal
22
60 kgHayter
23
70 kgArensman
24
68 kgCastroviejo
25
62 kg
Weight (KG) →
Result →
78
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HOLLMANN Juri | 70 |
3 | MASNADA Fausto | 65 |
4 | OLIVEIRA Nelson | 67 |
5 | VENDRAME Andrea | 60 |
6 | GARCÍA PIERNA Raúl | 67 |
7 | CARAPAZ Richard | 62 |
8 | BERTHET Clément | 68 |
9 | RODRÍGUEZ Carlos | 67 |
10 | CAVAGNA Rémi | 78 |
11 | BRENNER Marco | 59 |
12 | BALMER Alexandre | 70 |
13 | NYS Thibau | 64 |
14 | LIPOWITZ Florian | 68 |
15 | ADRIÀ Roger | 64 |
16 | ASGREEN Kasper | 75 |
17 | MAS Enric | 61 |
18 | SIVAKOV Pavel | 70 |
19 | RAFFERTY Darren | 65 |
20 | ROSSKOPF Joey | 74 |
21 | VLASOV Aleksandr | 68 |
22 | BERNAL Egan | 60 |
23 | HAYTER Ethan | 70 |
24 | ARENSMAN Thymen | 68 |
25 | CASTROVIEJO Jonathan | 62 |