Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 52
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Bommel
1
75 kgTrofimov
2
59 kgHristov
6
57 kgLampater
12
75 kgJovanović
14
60 kgMarin
15
67 kgKvasina
16
72 kgBroniš
20
74 kgBartko
24
78 kgFlahaut
30
66 kgHorton
31
70 kgKüçükbay
48
70 kgSteig
58
72 kgTamouridis
66
70 kgLloyd
77
70 kgBengsch
93
85 kgTerpstra
111
64 kg
1
75 kgTrofimov
2
59 kgHristov
6
57 kgLampater
12
75 kgJovanović
14
60 kgMarin
15
67 kgKvasina
16
72 kgBroniš
20
74 kgBartko
24
78 kgFlahaut
30
66 kgHorton
31
70 kgKüçükbay
48
70 kgSteig
58
72 kgTamouridis
66
70 kgLloyd
77
70 kgBengsch
93
85 kgTerpstra
111
64 kg
Weight (KG) →
Result →
85
57
1
111
# | Rider | Weight (KG) |
---|---|---|
1 | BOMMEL Henning | 75 |
2 | TROFIMOV Yuri | 59 |
6 | HRISTOV Stefan Koychev | 57 |
12 | LAMPATER Leif | 75 |
14 | JOVANOVIĆ Nebojša | 60 |
15 | MARIN Matej | 67 |
16 | KVASINA Matija | 72 |
20 | BRONIŠ Roman | 74 |
24 | BARTKO Robert | 78 |
30 | FLAHAUT Denis | 66 |
31 | HORTON Tobyn | 70 |
48 | KÜÇÜKBAY Kemal | 70 |
58 | STEIG Csaba | 72 |
66 | TAMOURIDIS Ioannis | 70 |
77 | LLOYD Daniel | 70 |
93 | BENGSCH Robert | 85 |
111 | TERPSTRA Mike | 64 |