Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 92
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
Marin
3
67 kgTrofimov
5
59 kgBommel
11
75 kgLampater
13
75 kgHristov
17
57 kgJovanović
26
60 kgKvasina
39
72 kgBroniš
41
74 kgKüçükbay
44
70 kgHorton
48
70 kgTamouridis
51
70 kgLloyd
71
70 kgBartko
93
78 kgFlahaut
101
66 kgTerpstra
104
64 kgBengsch
108
85 kgSteig
109
72 kg
3
67 kgTrofimov
5
59 kgBommel
11
75 kgLampater
13
75 kgHristov
17
57 kgJovanović
26
60 kgKvasina
39
72 kgBroniš
41
74 kgKüçükbay
44
70 kgHorton
48
70 kgTamouridis
51
70 kgLloyd
71
70 kgBartko
93
78 kgFlahaut
101
66 kgTerpstra
104
64 kgBengsch
108
85 kgSteig
109
72 kg
Weight (KG) →
Result →
85
57
3
109
# | Rider | Weight (KG) |
---|---|---|
3 | MARIN Matej | 67 |
5 | TROFIMOV Yuri | 59 |
11 | BOMMEL Henning | 75 |
13 | LAMPATER Leif | 75 |
17 | HRISTOV Stefan Koychev | 57 |
26 | JOVANOVIĆ Nebojša | 60 |
39 | KVASINA Matija | 72 |
41 | BRONIŠ Roman | 74 |
44 | KÜÇÜKBAY Kemal | 70 |
48 | HORTON Tobyn | 70 |
51 | TAMOURIDIS Ioannis | 70 |
71 | LLOYD Daniel | 70 |
93 | BARTKO Robert | 78 |
101 | FLAHAUT Denis | 66 |
104 | TERPSTRA Mike | 64 |
108 | BENGSCH Robert | 85 |
109 | STEIG Csaba | 72 |