Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 95
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Trofimov
2
59 kgKvasina
3
72 kgJovanović
12
60 kgHristov
15
57 kgBommel
16
75 kgBroniš
33
74 kgLampater
36
75 kgMarin
50
67 kgTamouridis
56
70 kgKüçükbay
60
70 kgHorton
63
70 kgTerpstra
84
64 kgLloyd
94
70 kgBartko
95
78 kgBengsch
99
85 kgSteig
102
72 kgFlahaut
109
66 kg
2
59 kgKvasina
3
72 kgJovanović
12
60 kgHristov
15
57 kgBommel
16
75 kgBroniš
33
74 kgLampater
36
75 kgMarin
50
67 kgTamouridis
56
70 kgKüçükbay
60
70 kgHorton
63
70 kgTerpstra
84
64 kgLloyd
94
70 kgBartko
95
78 kgBengsch
99
85 kgSteig
102
72 kgFlahaut
109
66 kg
Weight (KG) →
Result →
85
57
2
109
# | Rider | Weight (KG) |
---|---|---|
2 | TROFIMOV Yuri | 59 |
3 | KVASINA Matija | 72 |
12 | JOVANOVIĆ Nebojša | 60 |
15 | HRISTOV Stefan Koychev | 57 |
16 | BOMMEL Henning | 75 |
33 | BRONIŠ Roman | 74 |
36 | LAMPATER Leif | 75 |
50 | MARIN Matej | 67 |
56 | TAMOURIDIS Ioannis | 70 |
60 | KÜÇÜKBAY Kemal | 70 |
63 | HORTON Tobyn | 70 |
84 | TERPSTRA Mike | 64 |
94 | LLOYD Daniel | 70 |
95 | BARTKO Robert | 78 |
99 | BENGSCH Robert | 85 |
102 | STEIG Csaba | 72 |
109 | FLAHAUT Denis | 66 |