Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 103
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Tamouridis
5
70 kgBommel
6
75 kgMarin
11
67 kgTrofimov
12
59 kgHristov
13
57 kgHorton
16
70 kgLampater
17
75 kgTerpstra
22
64 kgKvasina
32
72 kgJovanović
38
60 kgBroniš
54
74 kgBartko
89
78 kgLloyd
94
70 kgBengsch
95
85 kgSteig
101
72 kgFlahaut
104
66 kgKüçükbay
107
70 kg
5
70 kgBommel
6
75 kgMarin
11
67 kgTrofimov
12
59 kgHristov
13
57 kgHorton
16
70 kgLampater
17
75 kgTerpstra
22
64 kgKvasina
32
72 kgJovanović
38
60 kgBroniš
54
74 kgBartko
89
78 kgLloyd
94
70 kgBengsch
95
85 kgSteig
101
72 kgFlahaut
104
66 kgKüçükbay
107
70 kg
Weight (KG) →
Result →
85
57
5
107
# | Rider | Weight (KG) |
---|---|---|
5 | TAMOURIDIS Ioannis | 70 |
6 | BOMMEL Henning | 75 |
11 | MARIN Matej | 67 |
12 | TROFIMOV Yuri | 59 |
13 | HRISTOV Stefan Koychev | 57 |
16 | HORTON Tobyn | 70 |
17 | LAMPATER Leif | 75 |
22 | TERPSTRA Mike | 64 |
32 | KVASINA Matija | 72 |
38 | JOVANOVIĆ Nebojša | 60 |
54 | BRONIŠ Roman | 74 |
89 | BARTKO Robert | 78 |
94 | LLOYD Daniel | 70 |
95 | BENGSCH Robert | 85 |
101 | STEIG Csaba | 72 |
104 | FLAHAUT Denis | 66 |
107 | KÜÇÜKBAY Kemal | 70 |