Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Savitskiy
1
72 kgShumov
2
65 kgStević
3
66 kgRiabushenko
5
61 kgWachter
8
72 kgBalykin
9
68 kgPiasetski
16
66 kgCholakov
20
66 kgSuchev
21
68 kgKüçükbay
22
70 kgTopchanyuk
23
65 kgBalkan
25
64 kgPetrovski
27
69 kgJovanović
28
60 kgKurbatov
29
73 kgEvtushenko
36
72 kgFurlanski
37
63 kgGerganov
38
60 kgKritskiy
41
81 kgZhurkin
44
77 kgBeganovic
48
64.7 kg
1
72 kgShumov
2
65 kgStević
3
66 kgRiabushenko
5
61 kgWachter
8
72 kgBalykin
9
68 kgPiasetski
16
66 kgCholakov
20
66 kgSuchev
21
68 kgKüçükbay
22
70 kgTopchanyuk
23
65 kgBalkan
25
64 kgPetrovski
27
69 kgJovanović
28
60 kgKurbatov
29
73 kgEvtushenko
36
72 kgFurlanski
37
63 kgGerganov
38
60 kgKritskiy
41
81 kgZhurkin
44
77 kgBeganovic
48
64.7 kg
Weight (KG) →
Result →
81
60
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | SAVITSKIY Ivan | 72 |
2 | SHUMOV Nikolai | 65 |
3 | STEVIĆ Ivan | 66 |
5 | RIABUSHENKO Alexandr | 61 |
8 | WACHTER Alexander | 72 |
9 | BALYKIN Ivan | 68 |
16 | PIASETSKI Aliaksandr | 66 |
20 | CHOLAKOV Stanimir | 66 |
21 | SUCHEV Mario | 68 |
22 | KÜÇÜKBAY Kemal | 70 |
23 | TOPCHANYUK Artem | 65 |
25 | BALKAN Serkan | 64 |
27 | PETROVSKI Stefan | 69 |
28 | JOVANOVIĆ Nebojša | 60 |
29 | KURBATOV Alexey | 73 |
36 | EVTUSHENKO Alexander | 72 |
37 | FURLANSKI Velizar | 63 |
38 | GERGANOV Evgeni | 60 |
41 | KRITSKIY Timofey | 81 |
44 | ZHURKIN Nikolay | 77 |
48 | BEGANOVIC Ernad | 64.7 |