Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 53
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Topchanyuk
2
65 kgSavitskiy
3
72 kgShumov
4
65 kgWachter
5
72 kgBalykin
6
68 kgStević
8
66 kgRiabushenko
9
61 kgPiasetski
14
66 kgGerganov
15
60 kgJovanović
16
60 kgCholakov
24
66 kgKüçükbay
31
70 kgFurlanski
34
63 kgPetrovski
35
69 kgBalkan
39
64 kgKurbatov
40
73 kgKritskiy
42
81 kgEvtushenko
43
72 kgZhurkin
44
77 kgSuchev
46
68 kgBeganovic
47
64.7 kg
2
65 kgSavitskiy
3
72 kgShumov
4
65 kgWachter
5
72 kgBalykin
6
68 kgStević
8
66 kgRiabushenko
9
61 kgPiasetski
14
66 kgGerganov
15
60 kgJovanović
16
60 kgCholakov
24
66 kgKüçükbay
31
70 kgFurlanski
34
63 kgPetrovski
35
69 kgBalkan
39
64 kgKurbatov
40
73 kgKritskiy
42
81 kgEvtushenko
43
72 kgZhurkin
44
77 kgSuchev
46
68 kgBeganovic
47
64.7 kg
Weight (KG) →
Result →
81
60
2
47
# | Rider | Weight (KG) |
---|---|---|
2 | TOPCHANYUK Artem | 65 |
3 | SAVITSKIY Ivan | 72 |
4 | SHUMOV Nikolai | 65 |
5 | WACHTER Alexander | 72 |
6 | BALYKIN Ivan | 68 |
8 | STEVIĆ Ivan | 66 |
9 | RIABUSHENKO Alexandr | 61 |
14 | PIASETSKI Aliaksandr | 66 |
15 | GERGANOV Evgeni | 60 |
16 | JOVANOVIĆ Nebojša | 60 |
24 | CHOLAKOV Stanimir | 66 |
31 | KÜÇÜKBAY Kemal | 70 |
34 | FURLANSKI Velizar | 63 |
35 | PETROVSKI Stefan | 69 |
39 | BALKAN Serkan | 64 |
40 | KURBATOV Alexey | 73 |
42 | KRITSKIY Timofey | 81 |
43 | EVTUSHENKO Alexander | 72 |
44 | ZHURKIN Nikolay | 77 |
46 | SUCHEV Mario | 68 |
47 | BEGANOVIC Ernad | 64.7 |