Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 58
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Savitskiy
1
72 kgShumov
5
65 kgStević
6
66 kgBalykin
7
68 kgRiabushenko
12
61 kgJovanović
17
60 kgGerganov
19
60 kgPiasetski
20
66 kgBalkan
27
64 kgPetrovski
29
69 kgFurlanski
30
63 kgSuchev
31
68 kgCholakov
32
66 kgZhurkin
38
77 kgBeganovic
39
64.7 kgKurbatov
43
73 kgKüçükbay
44
70 kgTopchanyuk
46
65 kgEvtushenko
47
72 kgKritskiy
48
81 kg
1
72 kgShumov
5
65 kgStević
6
66 kgBalykin
7
68 kgRiabushenko
12
61 kgJovanović
17
60 kgGerganov
19
60 kgPiasetski
20
66 kgBalkan
27
64 kgPetrovski
29
69 kgFurlanski
30
63 kgSuchev
31
68 kgCholakov
32
66 kgZhurkin
38
77 kgBeganovic
39
64.7 kgKurbatov
43
73 kgKüçükbay
44
70 kgTopchanyuk
46
65 kgEvtushenko
47
72 kgKritskiy
48
81 kg
Weight (KG) →
Result →
81
60
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | SAVITSKIY Ivan | 72 |
5 | SHUMOV Nikolai | 65 |
6 | STEVIĆ Ivan | 66 |
7 | BALYKIN Ivan | 68 |
12 | RIABUSHENKO Alexandr | 61 |
17 | JOVANOVIĆ Nebojša | 60 |
19 | GERGANOV Evgeni | 60 |
20 | PIASETSKI Aliaksandr | 66 |
27 | BALKAN Serkan | 64 |
29 | PETROVSKI Stefan | 69 |
30 | FURLANSKI Velizar | 63 |
31 | SUCHEV Mario | 68 |
32 | CHOLAKOV Stanimir | 66 |
38 | ZHURKIN Nikolay | 77 |
39 | BEGANOVIC Ernad | 64.7 |
43 | KURBATOV Alexey | 73 |
44 | KÜÇÜKBAY Kemal | 70 |
46 | TOPCHANYUK Artem | 65 |
47 | EVTUSHENKO Alexander | 72 |
48 | KRITSKIY Timofey | 81 |