Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Amberg
2
72 kgBlattmann
3
68 kgMollo
4
62 kgZimmermann
5
72 kgEgli
8
72 kgStettler
10
81 kgBonduel
11
74 kgRinaldi
12
71 kgLesueur
13
74 kgMartin
14
69 kgHartmann
18
68 kgFunke
21
65 kgKijewski
23
75 kgLevel
24
64 kgNeuens
25
76 kgBula
27
71 kgBüchi
30
68 kgKutschbach
32
70 kgHeimann
33
73 kg
2
72 kgBlattmann
3
68 kgMollo
4
62 kgZimmermann
5
72 kgEgli
8
72 kgStettler
10
81 kgBonduel
11
74 kgRinaldi
12
71 kgLesueur
13
74 kgMartin
14
69 kgHartmann
18
68 kgFunke
21
65 kgKijewski
23
75 kgLevel
24
64 kgNeuens
25
76 kgBula
27
71 kgBüchi
30
68 kgKutschbach
32
70 kgHeimann
33
73 kg
Weight (KG) →
Result →
81
62
2
33
# | Rider | Weight (KG) |
---|---|---|
2 | AMBERG Leo | 72 |
3 | BLATTMANN Walter | 68 |
4 | MOLLO Enrico | 62 |
5 | ZIMMERMANN Robert | 72 |
8 | EGLI Paul | 72 |
10 | STETTLER Kurt | 81 |
11 | BONDUEL Frans | 74 |
12 | RINALDI Gaspard | 71 |
13 | LESUEUR Raoul | 74 |
14 | MARTIN Hans | 69 |
18 | HARTMANN Fritz | 68 |
21 | FUNKE Fritz | 65 |
23 | KIJEWSKI Emil | 75 |
24 | LEVEL Léon | 64 |
25 | NEUENS François | 76 |
27 | BULA Alfred | 71 |
30 | BÜCHI Albert | 68 |
32 | KUTSCHBACH Willi | 70 |
33 | HEIMANN Theo | 73 |