Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Mollo
3
62 kgBlattmann
4
68 kgEgli
5
72 kgZimmermann
6
72 kgAmberg
10
72 kgStettler
11
81 kgRinaldi
14
71 kgBonduel
16
74 kgFunke
18
65 kgBula
19
71 kgLesueur
22
74 kgMartin
23
69 kgNeuens
25
76 kgKijewski
29
75 kgLevel
32
64 kgLuisoni
33
71 kgHartmann
34
68 kgErne
35
70 kgBulla
36
75 kgHeimann
37
73 kgLouviot
40
62 kgBüchi
41
68 kgWeber
44
75 kgKutschbach
45
70 kg
3
62 kgBlattmann
4
68 kgEgli
5
72 kgZimmermann
6
72 kgAmberg
10
72 kgStettler
11
81 kgRinaldi
14
71 kgBonduel
16
74 kgFunke
18
65 kgBula
19
71 kgLesueur
22
74 kgMartin
23
69 kgNeuens
25
76 kgKijewski
29
75 kgLevel
32
64 kgLuisoni
33
71 kgHartmann
34
68 kgErne
35
70 kgBulla
36
75 kgHeimann
37
73 kgLouviot
40
62 kgBüchi
41
68 kgWeber
44
75 kgKutschbach
45
70 kg
Weight (KG) →
Result →
81
62
3
45
# | Rider | Weight (KG) |
---|---|---|
3 | MOLLO Enrico | 62 |
4 | BLATTMANN Walter | 68 |
5 | EGLI Paul | 72 |
6 | ZIMMERMANN Robert | 72 |
10 | AMBERG Leo | 72 |
11 | STETTLER Kurt | 81 |
14 | RINALDI Gaspard | 71 |
16 | BONDUEL Frans | 74 |
18 | FUNKE Fritz | 65 |
19 | BULA Alfred | 71 |
22 | LESUEUR Raoul | 74 |
23 | MARTIN Hans | 69 |
25 | NEUENS François | 76 |
29 | KIJEWSKI Emil | 75 |
32 | LEVEL Léon | 64 |
33 | LUISONI Luigi | 71 |
34 | HARTMANN Fritz | 68 |
35 | ERNE August | 70 |
36 | BULLA Max | 75 |
37 | HEIMANN Theo | 73 |
40 | LOUVIOT Raymond | 62 |
41 | BÜCHI Albert | 68 |
44 | WEBER Gottlieb | 75 |
45 | KUTSCHBACH Willi | 70 |