Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Zimmermann
3
72 kgHartmann
4
68 kgLesueur
5
74 kgEgli
7
72 kgRinaldi
8
71 kgStettler
9
81 kgMartin
10
69 kgBlattmann
11
68 kgBonduel
13
74 kgMollo
14
62 kgAmberg
15
72 kgFunke
15
65 kgErne
15
70 kgNeuens
19
76 kgLevel
20
64 kgLuisoni
24
71 kgKijewski
27
75 kgBula
33
71 kgBüchi
37
68 kgKutschbach
38
70 kgHeimann
40
73 kg
3
72 kgHartmann
4
68 kgLesueur
5
74 kgEgli
7
72 kgRinaldi
8
71 kgStettler
9
81 kgMartin
10
69 kgBlattmann
11
68 kgBonduel
13
74 kgMollo
14
62 kgAmberg
15
72 kgFunke
15
65 kgErne
15
70 kgNeuens
19
76 kgLevel
20
64 kgLuisoni
24
71 kgKijewski
27
75 kgBula
33
71 kgBüchi
37
68 kgKutschbach
38
70 kgHeimann
40
73 kg
Weight (KG) →
Result →
81
62
3
40
# | Rider | Weight (KG) |
---|---|---|
3 | ZIMMERMANN Robert | 72 |
4 | HARTMANN Fritz | 68 |
5 | LESUEUR Raoul | 74 |
7 | EGLI Paul | 72 |
8 | RINALDI Gaspard | 71 |
9 | STETTLER Kurt | 81 |
10 | MARTIN Hans | 69 |
11 | BLATTMANN Walter | 68 |
13 | BONDUEL Frans | 74 |
14 | MOLLO Enrico | 62 |
15 | AMBERG Leo | 72 |
15 | FUNKE Fritz | 65 |
15 | ERNE August | 70 |
19 | NEUENS François | 76 |
20 | LEVEL Léon | 64 |
24 | LUISONI Luigi | 71 |
27 | KIJEWSKI Emil | 75 |
33 | BULA Alfred | 71 |
37 | BÜCHI Albert | 68 |
38 | KUTSCHBACH Willi | 70 |
40 | HEIMANN Theo | 73 |