Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Amberg
1
72 kgZimmermann
5
72 kgMollo
7
62 kgLesueur
8
74 kgBonduel
10
74 kgLevel
11
64 kgRinaldi
12
71 kgFunke
17
65 kgStettler
20
81 kgBlattmann
21
68 kgBula
22
71 kgMartin
23
69 kgBüchi
24
68 kgKutschbach
25
70 kgLuisoni
28
71 kgEgli
30
72 kgKijewski
32
75 kgNeuens
34
76 kgHeimann
35
73 kgHartmann
36
68 kg
1
72 kgZimmermann
5
72 kgMollo
7
62 kgLesueur
8
74 kgBonduel
10
74 kgLevel
11
64 kgRinaldi
12
71 kgFunke
17
65 kgStettler
20
81 kgBlattmann
21
68 kgBula
22
71 kgMartin
23
69 kgBüchi
24
68 kgKutschbach
25
70 kgLuisoni
28
71 kgEgli
30
72 kgKijewski
32
75 kgNeuens
34
76 kgHeimann
35
73 kgHartmann
36
68 kg
Weight (KG) →
Result →
81
62
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | AMBERG Leo | 72 |
5 | ZIMMERMANN Robert | 72 |
7 | MOLLO Enrico | 62 |
8 | LESUEUR Raoul | 74 |
10 | BONDUEL Frans | 74 |
11 | LEVEL Léon | 64 |
12 | RINALDI Gaspard | 71 |
17 | FUNKE Fritz | 65 |
20 | STETTLER Kurt | 81 |
21 | BLATTMANN Walter | 68 |
22 | BULA Alfred | 71 |
23 | MARTIN Hans | 69 |
24 | BÜCHI Albert | 68 |
25 | KUTSCHBACH Willi | 70 |
28 | LUISONI Luigi | 71 |
30 | EGLI Paul | 72 |
32 | KIJEWSKI Emil | 75 |
34 | NEUENS François | 76 |
35 | HEIMANN Theo | 73 |
36 | HARTMANN Fritz | 68 |